Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Conferences
Free Learning
Arrow right icon
Arrow up icon
GO TO TOP
Data Labeling in Machine Learning with Python

You're reading from   Data Labeling in Machine Learning with Python Explore modern ways to prepare labeled data for training and fine-tuning ML and generative AI models

Arrow left icon
Product type Paperback
Published in Jan 2024
Publisher Packt
ISBN-13 9781804610541
Length 398 pages
Edition 1st Edition
Languages
Tools
Arrow right icon
Author (1):
Arrow left icon
Vijaya Kumar Suda Vijaya Kumar Suda
Author Profile Icon Vijaya Kumar Suda
Vijaya Kumar Suda
Arrow right icon
View More author details
Toc

Table of Contents (18) Chapters Close

Preface 1. Part 1: Labeling Tabular Data
2. Chapter 1: Exploring Data for Machine Learning FREE CHAPTER 3. Chapter 2: Labeling Data for Classification 4. Chapter 3: Labeling Data for Regression 5. Part 2: Labeling Image Data
6. Chapter 4: Exploring Image Data 7. Chapter 5: Labeling Image Data Using Rules 8. Chapter 6: Labeling Image Data Using Data Augmentation 9. Part 3: Labeling Text, Audio, and Video Data
10. Chapter 7: Labeling Text Data 11. Chapter 8: Exploring Video Data 12. Chapter 9: Labeling Video Data 13. Chapter 10: Exploring Audio Data 14. Chapter 11: Labeling Audio Data 15. Chapter 12: Hands-On Exploring Data Labeling Tools 16. Index 17. Other Books You May Enjoy

Tools and frameworks for text data labeling

There are several open source tools and frameworks available for text data analysis and labeling. Here are some popular ones, along with their pros and cons:

Tools and frameworks

Pros

Cons

Natural Language Toolkit (NLTK)

Comprehensive library for NLP tasks.

Rich set of tools for tokenization, stemming, tagging, parsing, and more.

Active community support.

Suitable for educational purposes and research projects.

Some components may not be as efficient for large-scale industrial applications.

Steep learning curve for beginners.

spaCy

Fast and efficient, designed for production use.

Pre-trained models for various languages.

Provides robust support for tokenization, named entity...

lock icon The rest of the chapter is locked
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $19.99/month. Cancel anytime
Banner background image