Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Save more on your purchases! discount-offer-chevron-icon
Savings automatically calculated. No voucher code required.
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Newsletter Hub
Free Learning
Arrow right icon
timer SALE ENDS IN
0 Days
:
00 Hours
:
00 Minutes
:
00 Seconds
Arrow up icon
GO TO TOP
Build Your Own Programming Language

You're reading from   Build Your Own Programming Language A programmer's guide to designing compilers, interpreters, and DSLs for modern computing problems

Arrow left icon
Product type Paperback
Published in Jan 2024
Publisher Packt
ISBN-13 9781804618028
Length 556 pages
Edition 2nd Edition
Languages
Tools
Arrow right icon
Author (1):
Arrow left icon
Clinton  L. Jeffery Clinton L. Jeffery
Author Profile Icon Clinton L. Jeffery
Clinton L. Jeffery
Arrow right icon
View More author details
Toc

Table of Contents (27) Chapters Close

Preface 1. Section I: Programming Language Frontends
2. Why Build Another Programming Language? FREE CHAPTER 3. Programming Language Design 4. Scanning Source Code 5. Parsing 6. Syntax Trees 7. Section II: Syntax Tree Traversals
8. Symbol Tables 9. Checking Base Types 10. Checking Types on Arrays, Method Calls, and Structure Accesses 11. Intermediate Code Generation 12. Syntax Coloring in an IDE 13. Section III: Code Generation and Runtime Systems
14. Preprocessors and Transpilers 15. Bytecode Interpreters 16. Generating Bytecode 17. Native Code Generation 18. Implementing Operators and Built-In Functions 19. Domain Control Structures 20. Garbage Collection 21. Final Thoughts 22. Section IV: Appendix
23. Answers
24. Other Books You May Enjoy
25. Index
Appendix: Unicon Essentials

Languages used in the examples

This book provides code examples in two languages using a parallel translations model. The first language is Java because that language is ubiquitous. Hopefully, you know Java (or C++, or C#) and will be able to read the examples with intermediate proficiency. The second example language is the author’s own language, Unicon. While reading this book, you can judge for yourself which language is better suited to building programming languages. As many examples as possible are provided in both languages, and the examples in the two languages are written as similarly as possible. Sometimes, this will be to the advantage of Java, which is a bit lower level than Unicon. There are sometimes fancier or shorter ways to write things in Unicon, but our Unicon examples will stick as close to Java as possible. The differences between Java and Unicon will be obvious, but they are somewhat lessened in importance by the compiler construction tools we will use.

This book uses modern descendants of the venerable Lex and YACC tools to generate our scanner and parser. Lex and YACC are declarative programming languages that solve some of our hard problems at a higher level than Java or Unicon. It would have been nice if a modern descendant of Lex and YACC (such as ANTLR) supported both Java and Unicon, but such is not the case. One of the very cool parts of this book is this: by choosing tools for Java and Unicon that are very compatible with the original Lex and YACC and extending them a bit, we have managed to use the same lexical and syntax specifications of our compiler in both Java and Unicon!

While Java and Unicon are our implementation languages, we need to talk about one more language: the example language we are building. It is a stand-in for whatever language you decide to build. Somewhat arbitrarily, this book introduces a language called Jzero for this purpose. Niklaus Wirth invented a toy language called PL/0 (programming language zero; the name is a riff on the language name PL/1) that was used in compiler construction courses. Jzero is a tiny subset of Java that serves a similar purpose. I looked pretty hard (that is, I googled Jzero and then Jzero compiler) to see whether someone had already posted a Jzero definition we could use and did not spot one by that name, so we will just make it up as we go along.

The Java examples in this book will be tested using Java 21; maybe other recent versions of Java will work. You can get OpenJDK from http://openjdk.org, or if you are on Linux, your operating system probably has an OpenJDK package that you can install. Additional programming language construction tools (Jflex and byacc/j) that are required for the Java examples will be introduced in subsequent chapters as they are used. The Java implementations we will support might be more constrained by which versions will run these language construction tools than anything else.

The Unicon examples in this book work with Unicon version 13.3, which can be obtained from http://unicon.org. To install Unicon on Windows, you must download a .msi file and run the installer. To install on Linux, you should follow the instructions found on the unicon.org site.

Having gone through the basic organization of a programming language and the implementation that this book will use, perhaps we should take another look at when a programming language is called for, and when building one can be avoided by developing a library instead.

You have been reading a chapter from
Build Your Own Programming Language - Second Edition
Published in: Jan 2024
Publisher: Packt
ISBN-13: 9781804618028
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $19.99/month. Cancel anytime
Banner background image