Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Save more on your purchases! discount-offer-chevron-icon
Savings automatically calculated. No voucher code required.
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Newsletter Hub
Free Learning
Arrow right icon
timer SALE ENDS IN
0 Days
:
00 Hours
:
00 Minutes
:
00 Seconds
Arrow up icon
GO TO TOP
Build Stunning Real-time VFX with Unreal Engine 5

You're reading from   Build Stunning Real-time VFX with Unreal Engine 5 Start your journey into Unreal particle systems to create realistic visual effects using Niagara

Arrow left icon
Product type Paperback
Published in May 2023
Publisher Packt
ISBN-13 9781801072410
Length 312 pages
Edition 1st Edition
Languages
Tools
Concepts
Arrow right icon
Author (1):
Arrow left icon
Hrishikesh Andurlekar Hrishikesh Andurlekar
Author Profile Icon Hrishikesh Andurlekar
Hrishikesh Andurlekar
Arrow right icon
View More author details
Toc

Table of Contents (16) Chapters Close

Preface 1. Part 1: Introduction to Niagara and Particle Systems in Unreal Engine 5
2. Chapter 1: Getting Started with Unreal Engine Particle System Frameworks FREE CHAPTER 3. Chapter 2: Understanding Particle System Concepts 4. Chapter 3: Exploring Niagara Concepts and Architecture 5. Chapter 4: Building Our First Niagara System 6. Chapter 5: Diving into Emitter-System Overrides 7. Part 2: Dive Deeper into Niagara for VFX
8. Chapter 6: Exploring Dynamic Inputs 9. Chapter 7: Creating Custom Niagara Modules 10. Chapter 8: Local Modules and Versioning 11. Chapter 9: Events and Event Handlers 12. Chapter 10: Debugging Workflow in Niagara 13. Chapter 11: Controlling Niagara Particles Using Blueprints 14. Index 15. Other Books You May Enjoy

Use cases for Niagara

Being the next-generation FX system, Niagara allows technical artists to add custom functionality to a particle system. It is equally accessible to beginner and advanced users alike. Beginners can start with a variety of templates as their starting points, while advanced users can add custom modules to create complex effects.

Niagara can be used to create all the effects that Cascade can and then go much further. Standard particle effects such as fire, smoke, rain, and snow are surprisingly easy to set up.

Niagara particles can be used to create much more beyond standard particle effects. As you gain more knowledge of Niagara, you will find interesting and powerful features that extend its capabilities.

Some of the advanced features include interfacing with the world by reading mesh triangles, tracing against physics volumes, and reading scene depth and query distance fields.

These features allow you to create flocks of birds or swarms of spiders that respond to the game environment. A flock of bats, for example, can work their way through an enclosed cave environment without colliding with the rocks. A swarm of spiders made in Niagara can crawl across the floor, over any obstacles, and react to the presence of a player. Particles can be represented by animated meshes to render more authenticity to such a simulation.

Niagara also makes it possible to create complex effects such as the morphing of meshes with a particle-based transition where an object may dissolve into particles, and then those particles reassemble to form another object of a different shape. The objects, in this case, can be static or skeletal meshes, which can help game designers include interesting events in their games.

The most important aspect of all the aforementioned effects is you do not need a programmer to design these effects. Unreal artists can design such effects on their own without needing any programming knowledge.

Niagara makes it extremely easy for other parts of Unreal to share data with the particle system. This allows you to build blueprints that include Niagara Systems and have exposed variables with which even a beginner can tweak the Niagara System to produce an array of effect variations. For example, a SnowStorm blueprint can contain abstracted values such as snow density, snowflake size, and turbulence in the Details Panel, which will act on the appropriate parameters in the Niagara System (Spawn rate, Sprite size, Curl force, etc.) to create various stages of a snowstorm or even change the values in real time in a game in response to player actions. These types of blueprints allow junior Unreal artists to indirectly modify Niagara System properties without requiring extensive knowledge of Niagara.

A Niagara System can also read external data such as a sound file and have the particle systems react to that data to create a visualization effect. For example, we can have a particle system spawn different colored particles in response to different frequencies of a soundtrack driving the particle system. For a more visual representation of what is being discussed here, you can go to https://www.youtube.com/watch?v=Vg1niqfDuzs.

In UE5, Niagara goes much further with Niagara Fluids, a plugin that adds real-time grid-based simulations to Unreal Engine. This plugin adds templates for two-dimensional gas simulations (2D Gas), three-dimensional gas simulations (3D Gas), Fluid Implicit Particle (FLIP), and shallow water simulations, which are easy enough for beginners to use and can be tweaked at a granular level by advanced users.

Figure 1.17: Niagara Fluids templates in Unreal Engine 5

Figure 1.17: Niagara Fluids templates in Unreal Engine 5

While the fluid simulations can look amazing, not all devices on which your game may run will have enough resources to support a real-time fluid simulation. To bypass that, UE5 includes the Baker module to bake fluid simulations into a flipbook. These flipbooks can be used with sprite-based particle systems, which are very efficient and can run on slower devices. This also enables us to create rich secondary effects without sacrificing performance.

Niagara in UE5 also has a GPU ray-tracing option in the Collision module. Traditionally, GPU particles have used depth buffer to approximate collisions. Collisions using depth buffer are not very accurate. When using depth buffer, if the GPU particle system is occluded by an object, the particle system is culled by Unreal Engine and disappears. This can look odd. With the new hardware-based raytraced collisions, you can rest assured that the collisions will be accurate, and we will not encounter situations where GPU particles disappear.

In the following chapters, we will be building up an Unreal level from scratch and exploring a few of these use cases just discussed.

You have been reading a chapter from
Build Stunning Real-time VFX with Unreal Engine 5
Published in: May 2023
Publisher: Packt
ISBN-13: 9781801072410
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $19.99/month. Cancel anytime
Banner background image