Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Save more on your purchases now! discount-offer-chevron-icon
Savings automatically calculated. No voucher code required.
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Conferences
Free Learning
Arrow right icon
Arrow up icon
GO TO TOP
Apache Spark Quick Start Guide

You're reading from   Apache Spark Quick Start Guide Quickly learn the art of writing efficient big data applications with Apache Spark

Arrow left icon
Product type Paperback
Published in Jan 2019
Publisher Packt
ISBN-13 9781789349108
Length 154 pages
Edition 1st Edition
Languages
Concepts
Arrow right icon
Authors (2):
Arrow left icon
Akash Grade Akash Grade
Author Profile Icon Akash Grade
Akash Grade
Shrey Mehrotra Shrey Mehrotra
Author Profile Icon Shrey Mehrotra
Shrey Mehrotra
Arrow right icon
View More author details
Toc

What is Spark?

Apache Spark is a distributed computing framework which makes big-data processing quite easy, fast, and scalable. You must be wondering what makes Spark so popular in the industry, and how is it really different than the existing tools available for big-data processing? The reason is that it provides a unified stack for processing all different kinds of big data, be it batch, streaming, machine learning, or graph data.

Spark was developed at UC Berkeley’s AMPLab in 2009 and later came under the Apache Umbrella in 2010. The framework is mainly written in Scala and Java.

Spark provides an interface with many different distributed and non-distributed data stores, such as Hadoop Distributed File System (HDFS), Cassandra, Openstack Swift, Amazon S3, and Kudu. It also provides a wide variety of language APIs to perform analytics on the data stored in these data stores. These APIs include Scala, Java, Python, and R.

The basic entity of Spark is Resilient Distributed Dataset (RDD), which is a read-only partitioned collection of data. RDD can be created using data stored on different data stores or using existing RDD. We shall discuss this in more detail in Chapter 3, Spark RDD.

Spark needs a resource manager to distribute and execute its tasks. By default, Spark comes up with its own standalone scheduler, but it integrates easily with Apache Mesos and Yet Another Resource Negotiator (YARN) for cluster resource management and task execution.

One of the main features of Spark is to keep a large amount of data in memory for faster execution. It also has a component that generates a Directed Acyclic Graph (DAG) of operations based on the user program. We shall discuss these in more details in coming chapters.

The following diagram shows some of the popular data stores Spark can connect to:

Data stores
Spark is a computing engine, and should not be considered as a storage system as well. Spark is also not designed for cluster management. For this purpose, frameworks such as Mesos and YARN are used.
lock icon The rest of the chapter is locked
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at €18.99/month. Cancel anytime