Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Save more on your purchases! discount-offer-chevron-icon
Savings automatically calculated. No voucher code required.
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Newsletter Hub
Free Learning
Arrow right icon
timer SALE ENDS IN
0 Days
:
00 Hours
:
00 Minutes
:
00 Seconds
Arrow up icon
GO TO TOP
Apache Kafka Quick Start Guide

You're reading from   Apache Kafka Quick Start Guide Leverage Apache Kafka 2.0 to simplify real-time data processing for distributed applications

Arrow left icon
Product type Paperback
Published in Dec 2018
Publisher Packt
ISBN-13 9781788997829
Length 186 pages
Edition 1st Edition
Languages
Tools
Arrow right icon
Author (1):
Arrow left icon
Raúl Estrada Raúl Estrada
Author Profile Icon Raúl Estrada
Raúl Estrada
Arrow right icon
View More author details
Toc

Table of Contents (10) Chapters Close

Preface 1. Configuring Kafka FREE CHAPTER 2. Message Validation 3. Message Enrichment 4. Serialization 5. Schema Registry 6. Kafka Streams 7. KSQL 8. Kafka Connect 9. Other Books You May Enjoy

Running Kafka topics

The power inside a broker is the topic, namely the queues inside it. Now that we have two brokers running, let's create a Kafka topic on them.

Kafka, like almost all modern infrastructure projects, has three ways of building things: through the command line, through programming, and through a web console (in this case the Confluent Control Center). The management (creation, modification, and destruction) of Kafka brokers can be done through programs written in most modern programming languages. If the language is not supported, it could be managed through the Kafka REST API. The previous section showed how to build a broker using the command line. In later chapters, we will see how to do this process through programming.

Is it possible to only manage (create, modify, or destroy) brokers through programming? No, we can also manage the topics. The topics can also be created through the command line. Kafka has pre-built utilities to manage brokers as we already saw and to manage topics, as we will see next.

To create a topic called amazingTopic in our running cluster, use the following command:

> <confluent-path>/bin/kafka-topics --create --zookeeper localhost:2181 --replication-factor 1 --partitions 1 --topic amazingTopic

The output should be as follows:

Created topic amazingTopic

Here, the kafka-topics command is used. With the --create parameter it is specified that we want to create a new topic. The --topic parameter sets the name of the topic, in this case, amazingTopic.

Do you remember the terms parallelism and redundancy? Well, the –-partitions parameter controls the parallelism and the --replication-factor parameter controls the redundancy.

The --replication-factor parameter is fundamental as it specifies in how many servers of the cluster the topic is going to replicate (for example, running). On the other hand, one broker can run just one replica.

Obviously, if a greater number than the number of running servers on the cluster is specified, it will result in an error (you don't believe me? Try it in your environment). The error will be like this:

Error while executing topic command: replication factor: 3 larger than available brokers: 2

[2018-09-01 07:13:31,350] ERROR org.apache.kafka.common.errors.InvalidReplicationFactorException: replication factor: 3 larger than available brokers: 2

(kafka.admin.TopicCommand$)

To be considered, the broker should be running (don't be shy and test all this theory in your environment).

The --partitions parameter, as its name implies, says how many partitions the topic will have. The number determines the parallelism that can be achieved on the consumer's side. This parameter is very important when doing cluster fine-tuning.

Finally, as expected, the --zookeeper parameter indicates where the Zookeeper cluster is running.

When a topic is created, the output in the broker log is something like this:

[2018-09-01 07:05:53,910] INFO [ReplicaFetcherManager on broker 1] Removed fetcher for partitions amazingTopic-0 (kafka.server.ReplicaFetcherManager)

[2018-09-01 07:05:53,950] INFO Completed load of log amazingTopic-0 with 1 log segments and log end offset 0 in 21 ms (kafka.log.Log)

In short, this message reads like a new topic has been born in our cluster.

How can I check my new and shiny topic? By using the same command: kafka-topics.

There are more parameters than --create. To check the status of a topic, run the kafka-topics command with the --list parameter, as follows:

> <confluent-path>/bin/kafka-topics.sh --list --zookeeper localhost:2181

The output is the list of topics, as we know, is as follows:

amazingTopic

This command returns the list with the names of all of the running topics in the cluster.

How can I get details of a topic? Using the same command: kafka-topics.

For a particular topic, run the kafka-topics command with the --describe parameter, as follows:

> <confluent-path>/bin/kafka-topics --describe --zookeeper localhost:2181 --topic amazingTopic

The command output is as follows:

Topic:amazingTopic PartitionCount:1 ReplicationFactor:1 Configs: Topic: amazingTopic Partition: 0 Leader: 1 Replicas: 1 Isr: 1

Here is a brief explanation of the output:

  • PartitionCount: Number of partitions on the topic (parallelism)
  • ReplicationFactor: Number of replicas on the topic (redundancy)
  • Leader: Node responsible for reading and writing operations of a given partition
  • Replicas: List of brokers replicating this topic data; some of these might even be dead
  • Isr: List of nodes that are currently in-sync replicas

Let's create a topic with multiple replicas (for example, we will run with more brokers in the cluster); we type the following:

> <confluent-path>/bin/kafka-topics --create --zookeeper localhost:2181 --replication-factor 2 --partitions 1 --topic redundantTopic

The output is as follows:

Created topic redundantTopic

Now, call the kafka-topics command with the --describe parameter to check the topic details, as follows:

> <confluent-path>/bin/kafka-topics --describe --zookeeper localhost:2181 --topic redundantTopic


Topic:redundantTopic PartitionCount:1 ReplicationFactor:2 Configs:

Topic: redundantTopic Partition: 0 Leader: 1 Replicas: 1,2 Isr: 1,2

As you can see, Replicas and Isr are the same lists; we infer that all of the nodes are in-sync.

Your turn: play with the kafka-topics command, and try to create replicated topics on dead brokers and see the output. Also, create topics on running servers and then kill them to see the results. Was the output what you expected?

As mentioned before, all of these commands executed through the command line can be executed programmatically or performed through the Confluent Control Center web console.

You have been reading a chapter from
Apache Kafka Quick Start Guide
Published in: Dec 2018
Publisher: Packt
ISBN-13: 9781788997829
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $19.99/month. Cancel anytime
Banner background image