Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Save more on your purchases now! discount-offer-chevron-icon
Savings automatically calculated. No voucher code required.
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Conferences
Free Learning
Arrow right icon
Arrow up icon
GO TO TOP
Agile Machine Learning with DataRobot

You're reading from   Agile Machine Learning with DataRobot Automate each step of the machine learning life cycle, from understanding problems to delivering value

Arrow left icon
Product type Paperback
Published in Dec 2021
Publisher Packt
ISBN-13 9781801076807
Length 344 pages
Edition 1st Edition
Languages
Concepts
Arrow right icon
Authors (2):
Arrow left icon
Bipin Chadha Bipin Chadha
Author Profile Icon Bipin Chadha
Bipin Chadha
Sylvester Juwe Sylvester Juwe
Author Profile Icon Sylvester Juwe
Sylvester Juwe
Arrow right icon
View More author details
Toc

Table of Contents (19) Chapters Close

Preface 1. Section 1: Foundations
2. Chapter 1: What Is DataRobot and Why You Need It? FREE CHAPTER 3. Chapter 2: Machine Learning Basics 4. Chapter 3: Understanding and Defining Business Problems 5. Section 2: Full ML Life Cycle with DataRobot: Concept to Value
6. Chapter 4: Preparing Data for DataRobot 7. Chapter 5: Exploratory Data Analysis with DataRobot 8. Chapter 6: Model Building with DataRobot 9. Chapter 7: Model Understanding and Explainability 10. Chapter 8: Model Scoring and Deployment 11. Section 3: Advanced Topics
12. Chapter 9: Forecasting and Time Series Modeling 13. Chapter 10: Recommender Systems 14. Chapter 11: Working with Geospatial Data, NLP, and Image Processing 15. Chapter 12: DataRobot Python API 16. Chapter 13: Model Governance and MLOps 17. Chapter 14: Conclusion 18. Other Books You May Enjoy

Technical requirements

For the analysis and modeling that will be carried out in this chapter, you will need access to the DataRobot software. Jupyter Notebook is crucial for this chapter as most of the interactions with DataRobot will be carried out from the console. Your Python version should be 2.7 or 3.4+. Now, let's look at the dataset that will be utilized in this chapter.

Check out the following video to see the Code in Action at https://bit.ly/3wV4qx5.

Automobile Dataset

The automobile dataset can be accessed at the UCI Machine Learning Repository ( https://archive.ics.uci.edu/ml/datasets/Automobile). Each row in this dataset represents a specific automobile. The features (columns) describe its characteristics, risk rating, and associated normalized losses. Even though it is a small dataset, it has many features that are numerical as well as categorical. Its features are described on its web page and the data is provided in.csv format.

Dataset Citation

Dua...

lock icon The rest of the chapter is locked
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $19.99/month. Cancel anytime