Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Save more on your purchases! discount-offer-chevron-icon
Savings automatically calculated. No voucher code required.
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Newsletter Hub
Free Learning
Arrow right icon
timer SALE ENDS IN
0 Days
:
00 Hours
:
00 Minutes
:
00 Seconds
Arrow up icon
GO TO TOP
15 Math Concepts Every Data Scientist Should Know

You're reading from   15 Math Concepts Every Data Scientist Should Know Understand and learn how to apply the math behind data science algorithms

Arrow left icon
Product type Paperback
Published in Aug 2024
Publisher Packt
ISBN-13 9781837634187
Length 510 pages
Edition 1st Edition
Languages
Tools
Arrow right icon
Author (1):
Arrow left icon
David Hoyle David Hoyle
Author Profile Icon David Hoyle
David Hoyle
Arrow right icon
View More author details
Toc

Table of Contents (21) Chapters Close

Preface 1. Part 1: Essential Concepts FREE CHAPTER
2. Chapter 1: Recap of Mathematical Notation and Terminology 3. Chapter 2: Random Variables and Probability Distributions 4. Chapter 3: Matrices and Linear Algebra 5. Chapter 4: Loss Functions and Optimization 6. Chapter 5: Probabilistic Modeling 7. Part 2: Intermediate Concepts
8. Chapter 6: Time Series and Forecasting 9. Chapter 7: Hypothesis Testing 10. Chapter 8: Model Complexity 11. Chapter 9: Function Decomposition 12. Chapter 10: Network Analysis 13. Part 3: Selected Advanced Concepts
14. Chapter 11: Dynamical Systems 15. Chapter 12: Kernel Methods 16. Chapter 13: Information Theory 17. Chapter 14: Non-Parametric Bayesian Methods 18. Chapter 15: Random Matrices 19. Index 20. Other Books You May Enjoy

Exercises

This section contains a series of exercises. The answers to all these can be found in the Answers_to_Exercises_Chap13.ipynb Jupyter notebook in this book’s GitHub repository.

We have a composite random variable, <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:m="http://schemas.openxmlformats.org/officeDocument/2006/math"><mml:mi>X</mml:mi></mml:math>, that consists of three binary random variables, <math xmlns="http://www.w3.org/1998/Math/MathML"><mrow><mrow><msub><mi>A</mi><mn>1</mn></msub><mo>,</mo><msub><mi>A</mi><mn>2</mn></msub><mo>,</mo><msub><mi>A</mi><mn>3</mn></msub></mrow></mrow></math>. We denote this as <math xmlns="http://www.w3.org/1998/Math/MathML"><mrow><mrow><mi>X</mi><mo>=</mo><mfenced open="(" close=")"><mrow><msub><mi>A</mi><mn>1</mn></msub><mo>,</mo><msub><mi>A</mi><mn>2</mn></msub><mo>,</mo><msub><mi>A</mi><mn>3</mn></msub></mrow></mfenced></mrow></mrow></math>. We’ll use <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:m="http://schemas.openxmlformats.org/officeDocument/2006/math"><mml:msub><mml:mrow><mml:mi>a</mml:mi></mml:mrow><mml:mrow><mml:mn>1</mml:mn></mml:mrow></mml:msub></mml:math> for the outcome for <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:m="http://schemas.openxmlformats.org/officeDocument/2006/math"><mml:msub><mml:mrow><mml:mi>A</mml:mi></mml:mrow><mml:mrow><mml:mn>1</mml:mn></mml:mrow></mml:msub></mml:math>, <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:m="http://schemas.openxmlformats.org/officeDocument/2006/math"><mml:msub><mml:mrow><mml:mi>a</mml:mi></mml:mrow><mml:mrow><mml:mn>2</mml:mn></mml:mrow></mml:msub></mml:math> for the outcome of <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:m="http://schemas.openxmlformats.org/officeDocument/2006/math"><mml:msub><mml:mrow><mml:mi>A</mml:mi></mml:mrow><mml:mrow><mml:mn>2</mml:mn></mml:mrow></mml:msub></mml:math>, and <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:m="http://schemas.openxmlformats.org/officeDocument/2006/math"><mml:msub><mml:mrow><mml:mi>a</mml:mi></mml:mrow><mml:mrow><mml:mn>3</mml:mn></mml:mrow></mml:msub></mml:math> for the outcome of <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:m="http://schemas.openxmlformats.org/officeDocument/2006/math"><mml:msub><mml:mrow><mml:mi>A</mml:mi></mml:mrow><mml:mrow><mml:mn>3</mml:mn></mml:mrow></mml:msub></mml:math>. This means <math xmlns="http://www.w3.org/1998/Math/MathML"><mrow><mrow><msub><mi>a</mi><mn>1</mn></msub><mo>,</mo><msub><mi>a</mi><mn>2</mn></msub><mo>,</mo><msub><mi>a</mi><mn>3</mn></msub><mo>∈</mo><mfenced open="{" close="}"><mn>0,1</mn></mfenced></mrow></mrow></math>.

We can write the outcome, <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:m="http://schemas.openxmlformats.org/officeDocument/2006/math"><mml:mi>x</mml:mi></mml:math>, for the overall random variable, <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:m="http://schemas.openxmlformats.org/officeDocument/2006/math"><mml:mi>X</mml:mi></mml:math>, as a three-digit bit-string For example, <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:m="http://schemas.openxmlformats.org/officeDocument/2006/math"><mml:mi>x</mml:mi><mml:mo>=</mml:mo><mml:mn>010</mml:mn></mml:math> –to represent the outcome, <math xmlns="http://www.w3.org/1998/Math/MathML"><mrow><mrow><msub><mi>a</mi><mn>1</mn></msub><mo>=</mo><mn>0</mn><mo>,</mo><msub><mi>a</mi><mn>2</mn></msub><mo>=</mo><mn>1</mn><mo>,</mo><msub><mi>a</mi><mn>3</mn></msub><mo>=</mo><mn>0</mn></mrow></mrow></math>. There are <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:m="http://schemas.openxmlformats.org/officeDocument/2006/math"><mml:msup><mml:mrow><mml:mn>2</mml:mn></mml:mrow><mml:mrow><mml:mn>3</mml:mn></mml:mrow></mml:msup><mml:mo>=</mml:mo><mml:mn>8</mml:mn></mml:math> possible values for <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:m="http://schemas.openxmlformats.org/officeDocument/2006/math"><mml:mi>x</mml:mi></mml:math>; these are 000,001,010,011,100,101,110,111. We can also denote the true probability distribution, P X(x), as <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:m="http://schemas.openxmlformats.org/officeDocument/2006/math"><mml:msub><mml:mrow><mml:mi>P</mml:mi></mml:mrow><mml:mrow><mml:msub><mml:mrow><mml:mi>A</mml:mi></mml:mrow><mml:mrow><mml:mn>1</mml:mn></mml:mrow></mml:msub><mml:mo>,</mml:mo><mml:msub><mml:mrow><mml:mi>A</mml:mi></mml:mrow><mml:mrow><mml:mn>2</mml:mn></mml:mrow></mml:msub><mml:mo>,</mml:mo><mml:msub><mml:mrow><mml:mi>A</mml:mi></mml:mrow><mml:mrow><mml:mn>3</mml:mn></mml:mrow></mml:msub></mml:mrow></mml:msub><mml:mfenced separators="|"><mml:mrow><mml:msub><mml:mrow><mml:mi>a</mml:mi></mml:mrow><mml:mrow><mml:mn>1</mml:mn></mml:mrow></mml:msub><mml:mo>,</mml:mo><mml:msub><mml:mrow><mml:mi>a</mml:mi></mml:mrow><mml:mrow><mml:mn>2</mml:mn></mml:mrow></mml:msub><mml:mo>,</mml:mo><mml:msub><mml:mrow><mml:mi>a</mml:mi></mml:mrow><mml:mrow><mml:mn>3</mml:mn></mml:mrow></mml:msub></mml:mrow></mml:mfenced></mml:math>; it corresponds to eight numbers (between 0 and 1) that all add up to 1.

Now, let’s introduce our approximation, <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:m="http://schemas.openxmlformats.org/officeDocument/2006/math"><mml:msub><mml:mrow><mml:mi>Q</mml:mi></mml:mrow><mml:mrow><mml:mi>X</mml:mi></mml:mrow></mml:msub></mml:math>. We will use a product approximation, so we’ll write the following:

<math xmlns="http://www.w3.org/1998/Math/MathML" display="block"><mrow><mrow><msub><mi>Q</mi><mrow><msub><mi>A</mi><mn>1</mn></msub><mo>,</mo><msub><mi>A</mi><mn>2</mn></msub><mo>,</mo><msub><mi>A</mi><mn>3</mn></msub></mrow></msub><mfenced open="(" close=")"><mrow><msub><mi>a</mi><mn>1</mn></msub><mo>,</mo><msub><mi>a</mi><mn>2</mn></msub><mo>,</mo><msub><mi>a</mi><mn>3</mn></msub></mrow></mfenced><mo>=</mo><msubsup><mi>P</mi><msub><mi>A</mi><mn>1</mn></msub><mrow><mo>(</mo><mtext>approx)</mtext></mrow></msubsup><mfenced open="(" close=")"><msub><mi>a</mi><mn>1</mn></msub></mfenced><msubsup><mi>P</mi><msub><mi>A</mi><mn>2</mn></msub><mrow><mo>(</mo><mtext>approx)</mtext></mrow></msubsup><mfenced open="(" close=")"><msub><mi>a</mi><mn>2</mn></msub></mfenced><msubsup><mi>P</mi><msub><mi>A</mi><mn>3</mn></msub><mrow><mo>(</mo><mtext>approx)</mtext></mrow></msubsup><mfenced open="(" close=")"><msub><mi>a</mi><mn>3</mn></msub></mfenced></mrow></mrow></math>

Eq. 44

We’ve put the superscript “approx” on the distributions on the...

lock icon The rest of the chapter is locked
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $19.99/month. Cancel anytime
Banner background image