Search icon CANCEL
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Conferences
Free Learning
Arrow right icon
Arrow up icon
GO TO TOP
The Deep Learning with Keras Workshop

You're reading from   The Deep Learning with Keras Workshop Learn how to define and train neural network models with just a few lines of code

Arrow left icon
Product type Paperback
Published in Jul 2020
Publisher Packt
ISBN-13 9781800562967
Length 496 pages
Edition 1st Edition
Languages
Tools
Arrow right icon
Authors (3):
Arrow left icon
Matthew Moocarme Matthew Moocarme
Author Profile Icon Matthew Moocarme
Matthew Moocarme
Mahla Abdolahnejad Mahla Abdolahnejad
Author Profile Icon Mahla Abdolahnejad
Mahla Abdolahnejad
Ritesh Bhagwat Ritesh Bhagwat
Author Profile Icon Ritesh Bhagwat
Ritesh Bhagwat
Arrow right icon
View More author details
Toc

Table of Contents (11) Chapters Close

Preface
1. Introduction to Machine Learning with Keras 2. Machine Learning versus Deep Learning FREE CHAPTER 3. Deep Learning with Keras 4. Evaluating Your Model with Cross-Validation Using Keras Wrappers 5. Improving Model Accuracy 6. Model Evaluation 7. Computer Vision with Convolutional Neural Networks 8. Transfer Learning and Pre-Trained Models 9. Sequential Modeling with Recurrent Neural Networks Appendix

Fine-Tuning a Pre-Trained Network

Fine-tuning means tweaking our neural network in such a way that it becomes more relevant to the task at hand. We can freeze some of the initial layers of the network so that we don't lose information stored in those layers. The information stored there is generic and useful. However, if we can freeze those layers while our classifier is learning and then unfreeze them, we can tweak them a little so that they fit even better to the problem at hand. Suppose we have a pre-trained network that identifies animals. If we want to identify specific animals, such as dogs and cats, we can tweak the layers a little bit so that they can learn what dogs and cats look like. This is like using the whole pre-trained network and then adding a new layer that consists of images of dogs and cats. We will be doing a similar activity by using a pre-built network and adding a classifier on top of it, which will be trained on pictures of dogs and cats.

There is...

lock icon The rest of the chapter is locked
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at €18.99/month. Cancel anytime