In Learning Transferable Architectures for Scalable Image Recognition, Barret Zoph, Vijay Vasudevan, Jonathon Shlens, Quoc V. Le, 2017 https://arxiv.org/abs/1707.07012. propose to learn an architectural building block on a small dataset that can be transferred to a large dataset. The authors propose to search for the best convolutional layer (or cell) on the CIFAR-10 dataset and then apply this learned cell to the ImageNet dataset by stacking together more copies of this cell, each with their own parameters. Precisely, all convolutional networks are made of convolutional layers (or cells) with identical structures but different weights. Searching for the best convolutional architectures is therefore reduced to searching for the best cell structures, which is faster more likely to generalize to other problems. Although the cell is not learned directly on ImageNet...
United States
United Kingdom
India
Germany
France
Canada
Russia
Spain
Brazil
Australia
Argentina
Austria
Belgium
Bulgaria
Chile
Colombia
Cyprus
Czechia
Denmark
Ecuador
Egypt
Estonia
Finland
Greece
Hungary
Indonesia
Ireland
Italy
Japan
Latvia
Lithuania
Luxembourg
Malaysia
Malta
Mexico
Netherlands
New Zealand
Norway
Philippines
Poland
Portugal
Romania
Singapore
Slovakia
Slovenia
South Africa
South Korea
Sweden
Switzerland
Taiwan
Thailand
Turkey
Ukraine