Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Newsletter Hub
Free Learning
Arrow right icon
timer SALE ENDS IN
0 Days
:
00 Hours
:
00 Minutes
:
00 Seconds
SciPy Recipes
SciPy Recipes

SciPy Recipes: A cookbook with over 110 proven recipes for performing mathematical and scientific computations

Arrow left icon
Profile Icon Martins Profile Icon Ruben Oliva Ramos Profile Icon V Kishore Ayyadevara
Arrow right icon
€18.99 per month
Full star icon Full star icon Full star icon Full star icon Half star icon 4.3 (3 Ratings)
Paperback Dec 2017 386 pages 1st Edition
eBook
€15.99 €23.99
Paperback
€29.99
Subscription
Free Trial
Renews at €18.99p/m
Arrow left icon
Profile Icon Martins Profile Icon Ruben Oliva Ramos Profile Icon V Kishore Ayyadevara
Arrow right icon
€18.99 per month
Full star icon Full star icon Full star icon Full star icon Half star icon 4.3 (3 Ratings)
Paperback Dec 2017 386 pages 1st Edition
eBook
€15.99 €23.99
Paperback
€29.99
Subscription
Free Trial
Renews at €18.99p/m
eBook
€15.99 €23.99
Paperback
€29.99
Subscription
Free Trial
Renews at €18.99p/m

What do you get with a Packt Subscription?

Free for first 7 days. $19.99 p/m after that. Cancel any time!
Product feature icon Unlimited ad-free access to the largest independent learning library in tech. Access this title and thousands more!
Product feature icon 50+ new titles added per month, including many first-to-market concepts and exclusive early access to books as they are being written.
Product feature icon Innovative learning tools, including AI book assistants, code context explainers, and text-to-speech.
Product feature icon Thousands of reference materials covering every tech concept you need to stay up to date.
Subscribe now
View plans & pricing
Table of content icon View table of contents Preview book icon Preview Book

SciPy Recipes

Getting Started with NumPy

In this chapter, we will learn the following recipes:

  • Creating NumPy arrays
  • Querying and changing the shape of an array
  • Storing and retrieving NumPy arrays
  • Indexing
  • Operations on arrays
  • Using marked arrays to represent invalid data
  • Using object arrays to store heterogeneous data
  • Defining, symbolically, a function operating on arrays

Introduction

We are now ready to start exploring NumPy, the fundamental package upon which the whole scientific Python stack is built. This chapter presents an introduction to the essential features of NumPy that are used in day-to-day scientific and data computations.

Built-in Python data structures, such as lists and dictionaries, are ill suited for scientific and data-oriented computing and their use results in programs that are significantly slower than numerical code written in compiled languages such as C, C++, and Fortran. NumPy was created to address this problem, and solves it by defining specialized array-oriented objects and methods designed for efficient numerical and data computing. The main data structure defined in NumPy with this purpose is ndarray, which represents a multidimensional array of data.

Objects of ndarray type differ from the native Python data structures...

Creating NumPy arrays

There are several ways to create objects of ndarray type. The recipes in this chapter provide a comprehensive list of the possibilities.

How to do it…

Let's move on to learn how an array can be created from a list.

Creating an array from a list

To create an array from an explicit list, use the following code:

x = np.array([2, 3.5, 5.2, 7.3])

This will assign to x the following array object:

array([ 2. , 3.5, -1. , 7.3, 0. ])

Notice that integer array entries are converted to floating point values. NumPy arrays are homogeneous, that is...

Querying and changing the shape of an array

Since we have learnt various ways to create an array, we can now definitely learn how to query and change the shape of an array.

How to do it...

The shape of an array is stored in the shape field of the ndarray object, as shown in the following example:

x = np.array([[1,2,3,4,5,6],[7,8,9,10,11,12]])
x.shape

The shape field of an ndarray object contains a tuple with the size of each of the dimensions of the array, so the preceding code will produce the following output:

(2, 6)

It is possible to assign a to the field shape, which has the effect of reshaping the array, as shown in the following example:

x.shape = (4,3)

This statement will change the array to the following:

array...

Storing and retrieving NumPy arrays

Most realistic applications deal with large datasets and will require results to be stored in persistent media, such as a hard disk. NumPy arrays can be stored in either text or binary format and binary files can be optionally compressed. We start the section by showing you a recipe to store files in text format.

How to do it...

Let us proceed with getting our queries about storing and retrieving NumPy arrays resolved.

Storing a NumPy array in text format

To store a single NumPy array to the disk in text format, use the savetxt...

Indexing

In this section, we address the methods NumPy offers for access and modification of data in an array. Python itself provides a rich set of indexing modes, and NumPy extends these with a number of methods suitable for numerical computations.

To access items of an array a, NumPy, as Python, uses the a[...] bracket notation. In the background, NumPy defines the __getitem__, __setitem__, and __deleteitem__ methods to do the requested operations on the array items. The arguments inside the brackets are expressions that specify the locations of the items we want to access. For example, to access the element at position (1,2) of the two-dimensional array a, we use the expression a[1,2]. Since indexing starts at 0, the expression refers to the item in the second row and third column of the array.

In NumPy, it is common to use notation, as in the preceding example, to index items...

Operations on arrays

NumPy defines a rich set of operations and functions for the ndarray type. NumPy defines the notion of a universal function, abbreviated as ufunc, which is a function object that can be applied to arbitrary arrays. Universal functions are objects of ufunc type, and NumPy provides a vast collection of built-in ufunc functions, covering all computations needed in scientific and data applications.

A ufunc is specialized towards the element by element application of a function. That is, if x is an array object, and f is a ufunc, the f(x) expression will apply the function f to every element of array x, and return a new object with the resulting values.

A ufunc follows a strict functional protocol; applying the f function to x will never change the elements of the x arrays themselves, but return a new array with the values of f applied to each element of x. User...

Using masked arrays to represent invalid data

A common issue arising when working with data or doing computations is the presence of invalid values. Such values can arise either from data that is missing or as a result of operations that resulted in inconsistent data. We may also want to mask array elements that we know would raise errors in further computations.

Masked arrays in NumPy are supported by the masked_array class, which is defined in the numpy.ma module. To work with masked arrays, we need first to import this module, which can be done with the following code:

import numpy.ma as ma

How to do it...

In the following sections, we will get into the details of creating a masked array from the following:

  • An explicit...

Using object arrays to store heterogeneous data

Up to this point, we only considered arrays that contained native elementary data types.

How to do it...

If we need an array containing heterogeneous data, we can create an array with arbitrary Python objects as elements, as shown in the following code:

x = np.array([2.5, 'a string', [2,4], {'a':0, 'b':1}])

This will result in an array with the np.object ;data type, as indicated in the output line as follows:

array([2.5, 'string', [2, 4], {'a': 0, 'b': 1}], dtype=object)

If the objects to be contained in the array are not known at construction time, we can create an empty array of objects with the following code...

Defining, symbolically, a function operating on arrays

Anybody that has written numerical code will know that a common source of mistakes is the definition of functions that evaluate a complicated formula. One way around this problem is to use a package for symbolic computations, and we will take advantage of sympy, which is a compact Python symbolic package.

Getting ready

If you are using Anaconda, sympy is already installed on your system. Otherwise, you will have to install it by using pip3 install sympy.

To see the full results of the following recipe, we assume that the reader is running Jupyter. Before getting started, run the following code in a Jupyter cell:

from sympy import *
init_printing(use_latex=True)

This...

Left arrow icon Right arrow icon
Download code icon Download Code

Key benefits

  • Covers a wide range of data science tasks using SciPy, NumPy, pandas, and matplotlib
  • Effective recipes on advanced scientific computations, statistics, data wrangling, data visualization, and more
  • A must-have book if you're looking to solve your data-related problems using SciPy, on-the-go

Description

With the SciPy Stack, you get the power to effectively process, manipulate, and visualize your data using the popular Python language. Utilizing SciPy correctly can sometimes be a very tricky proposition. This book provides the right techniques so you can use SciPy to perform different data science tasks with ease. This book includes hands-on recipes for using the different components of the SciPy Stack such as NumPy, SciPy, matplotlib, and pandas, among others. You will use these libraries to solve real-world problems in linear algebra, numerical analysis, data visualization, and much more. The recipes included in the book will ensure you get a practical understanding not only of how a particular feature in SciPy Stack works, but also of its application to real-world problems. The independent nature of the recipes also ensure that you can pick up any one and learn about a particular feature of SciPy without reading through the other recipes, thus making the book a very handy and useful guide.

Who is this book for?

Python developers, aspiring data scientists, and analysts who want to get started with scientific computing using Python will find this book an indispensable resource. If you want to learn how to manipulate and visualize your data using the SciPy Stack, this book will also help you. A basic understanding of Python programming is all you need to get started.

What you will learn

  • • Get a solid foundation in scientific computing using Python
  • • Master common tasks related to SciPy and associated libraries such as NumPy, pandas, and matplotlib
  • • Perform mathematical operations such as linear algebra and work with the statistical and probability functions in SciPy
  • • Master advanced computing such as Discrete Fourier Transform and K-means with the SciPy Stack
  • • Implement data wrangling tasks efficiently using pandas
  • • Visualize your data through various graphs and charts using matplotlib

Product Details

Country selected
Publication date, Length, Edition, Language, ISBN-13
Publication date : Dec 20, 2017
Length: 386 pages
Edition : 1st
Language : English
ISBN-13 : 9781788291460
Category :
Languages :
Concepts :
Tools :

What do you get with a Packt Subscription?

Free for first 7 days. $19.99 p/m after that. Cancel any time!
Product feature icon Unlimited ad-free access to the largest independent learning library in tech. Access this title and thousands more!
Product feature icon 50+ new titles added per month, including many first-to-market concepts and exclusive early access to books as they are being written.
Product feature icon Innovative learning tools, including AI book assistants, code context explainers, and text-to-speech.
Product feature icon Thousands of reference materials covering every tech concept you need to stay up to date.
Subscribe now
View plans & pricing

Product Details

Publication date : Dec 20, 2017
Length: 386 pages
Edition : 1st
Language : English
ISBN-13 : 9781788291460
Category :
Languages :
Concepts :
Tools :

Packt Subscriptions

See our plans and pricing
Modal Close icon
€18.99 billed monthly
Feature tick icon Unlimited access to Packt's library of 7,000+ practical books and videos
Feature tick icon Constantly refreshed with 50+ new titles a month
Feature tick icon Exclusive Early access to books as they're written
Feature tick icon Solve problems while you work with advanced search and reference features
Feature tick icon Offline reading on the mobile app
Feature tick icon Simple pricing, no contract
€189.99 billed annually
Feature tick icon Unlimited access to Packt's library of 7,000+ practical books and videos
Feature tick icon Constantly refreshed with 50+ new titles a month
Feature tick icon Exclusive Early access to books as they're written
Feature tick icon Solve problems while you work with advanced search and reference features
Feature tick icon Offline reading on the mobile app
Feature tick icon Choose a DRM-free eBook or Video every month to keep
Feature tick icon PLUS own as many other DRM-free eBooks or Videos as you like for just €5 each
Feature tick icon Exclusive print discounts
€264.99 billed in 18 months
Feature tick icon Unlimited access to Packt's library of 7,000+ practical books and videos
Feature tick icon Constantly refreshed with 50+ new titles a month
Feature tick icon Exclusive Early access to books as they're written
Feature tick icon Solve problems while you work with advanced search and reference features
Feature tick icon Offline reading on the mobile app
Feature tick icon Choose a DRM-free eBook or Video every month to keep
Feature tick icon PLUS own as many other DRM-free eBooks or Videos as you like for just €5 each
Feature tick icon Exclusive print discounts

Frequently bought together


Stars icon
Total 84.97
Mastering Numerical Computing with NumPy
€29.99
Hands-On Data Analysis with NumPy and pandas
€24.99
SciPy Recipes
€29.99
Total 84.97 Stars icon

Table of Contents

10 Chapters
Getting to Know the Tools Chevron down icon Chevron up icon
Getting Started with NumPy Chevron down icon Chevron up icon
Using Matplotlib to Create Graphs Chevron down icon Chevron up icon
Data Wrangling with pandas Chevron down icon Chevron up icon
Matrices and Linear Algebra Chevron down icon Chevron up icon
Solving Equations and Optimization Chevron down icon Chevron up icon
Constants and Special Functions Chevron down icon Chevron up icon
Calculus, Interpolation, and Differential Equations Chevron down icon Chevron up icon
Statistics and Probability Chevron down icon Chevron up icon
Advanced Computations with SciPy Chevron down icon Chevron up icon

Customer reviews

Rating distribution
Full star icon Full star icon Full star icon Full star icon Half star icon 4.3
(3 Ratings)
5 star 66.7%
4 star 0%
3 star 33.3%
2 star 0%
1 star 0%
sk Feb 21, 2018
Full star icon Full star icon Full star icon Full star icon Full star icon 5
I found this book while trying to learn Python for Data Science and Analytics. As the name of the book suggests, SciPy 'Recipies', has a huge collection of data related operations, that can be performed in Python using NumPy, Pandas and SciPy libraries. Being someone who prefers hands-on approach to learn a particular topic, this book has been of huge help with tons of examples. Though this is not a theoretically heavy book, it gave enough context about the topic in hand, for me to clearly understand various functions used throughout the book. Few topics like Sparse Matrices with the example of how they are used in the real-world scenarios of Recommendation systems were excellently explained by the authors along with code implementation.Overall, its a highly recommended book for those who love the hands-on approach to learn Python for Data Science.
Amazon Verified review Amazon
Rakesh Feb 20, 2018
Full star icon Full star icon Full star icon Full star icon Full star icon 5
Great book !! clear explanation and runbook like instructions will help you to gets handson learning experience in analytics.
Amazon Verified review Amazon
roudan Aug 30, 2018
Full star icon Full star icon Full star icon Empty star icon Empty star icon 3
it is a scipy book, but 1/2 book talks about numpy,pandas, matplotlib. finally it starts scipy, the examples are not good, not much explanation on how to use, why use it, most of time, just list the functions and their input which I can find from scipy documents. so I was disappointed then go bought a different one, "mastering scipy" from Francisco J. Blanco-Silva. It is much better. I really love that " mastering scipy" book from Francisco.
Amazon Verified review Amazon
Get free access to Packt library with over 7500+ books and video courses for 7 days!
Start Free Trial

FAQs

What is included in a Packt subscription? Chevron down icon Chevron up icon

A subscription provides you with full access to view all Packt and licnesed content online, this includes exclusive access to Early Access titles. Depending on the tier chosen you can also earn credits and discounts to use for owning content

How can I cancel my subscription? Chevron down icon Chevron up icon

To cancel your subscription with us simply go to the account page - found in the top right of the page or at https://subscription.packtpub.com/my-account/subscription - From here you will see the ‘cancel subscription’ button in the grey box with your subscription information in.

What are credits? Chevron down icon Chevron up icon

Credits can be earned from reading 40 section of any title within the payment cycle - a month starting from the day of subscription payment. You also earn a Credit every month if you subscribe to our annual or 18 month plans. Credits can be used to buy books DRM free, the same way that you would pay for a book. Your credits can be found in the subscription homepage - subscription.packtpub.com - clicking on ‘the my’ library dropdown and selecting ‘credits’.

What happens if an Early Access Course is cancelled? Chevron down icon Chevron up icon

Projects are rarely cancelled, but sometimes it's unavoidable. If an Early Access course is cancelled or excessively delayed, you can exchange your purchase for another course. For further details, please contact us here.

Where can I send feedback about an Early Access title? Chevron down icon Chevron up icon

If you have any feedback about the product you're reading, or Early Access in general, then please fill out a contact form here and we'll make sure the feedback gets to the right team. 

Can I download the code files for Early Access titles? Chevron down icon Chevron up icon

We try to ensure that all books in Early Access have code available to use, download, and fork on GitHub. This helps us be more agile in the development of the book, and helps keep the often changing code base of new versions and new technologies as up to date as possible. Unfortunately, however, there will be rare cases when it is not possible for us to have downloadable code samples available until publication.

When we publish the book, the code files will also be available to download from the Packt website.

How accurate is the publication date? Chevron down icon Chevron up icon

The publication date is as accurate as we can be at any point in the project. Unfortunately, delays can happen. Often those delays are out of our control, such as changes to the technology code base or delays in the tech release. We do our best to give you an accurate estimate of the publication date at any given time, and as more chapters are delivered, the more accurate the delivery date will become.

How will I know when new chapters are ready? Chevron down icon Chevron up icon

We'll let you know every time there has been an update to a course that you've bought in Early Access. You'll get an email to let you know there has been a new chapter, or a change to a previous chapter. The new chapters are automatically added to your account, so you can also check back there any time you're ready and download or read them online.

I am a Packt subscriber, do I get Early Access? Chevron down icon Chevron up icon

Yes, all Early Access content is fully available through your subscription. You will need to have a paid for or active trial subscription in order to access all titles.

How is Early Access delivered? Chevron down icon Chevron up icon

Early Access is currently only available as a PDF or through our online reader. As we make changes or add new chapters, the files in your Packt account will be updated so you can download them again or view them online immediately.

How do I buy Early Access content? Chevron down icon Chevron up icon

Early Access is a way of us getting our content to you quicker, but the method of buying the Early Access course is still the same. Just find the course you want to buy, go through the check-out steps, and you’ll get a confirmation email from us with information and a link to the relevant Early Access courses.

What is Early Access? Chevron down icon Chevron up icon

Keeping up to date with the latest technology is difficult; new versions, new frameworks, new techniques. This feature gives you a head-start to our content, as it's being created. With Early Access you'll receive each chapter as it's written, and get regular updates throughout the product's development, as well as the final course as soon as it's ready.We created Early Access as a means of giving you the information you need, as soon as it's available. As we go through the process of developing a course, 99% of it can be ready but we can't publish until that last 1% falls in to place. Early Access helps to unlock the potential of our content early, to help you start your learning when you need it most. You not only get access to every chapter as it's delivered, edited, and updated, but you'll also get the finalized, DRM-free product to download in any format you want when it's published. As a member of Packt, you'll also be eligible for our exclusive offers, including a free course every day, and discounts on new and popular titles.