Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Free Learning
Arrow right icon
Arrow up icon
GO TO TOP
Regression Analysis with R

You're reading from   Regression Analysis with R Design and develop statistical nodes to identify unique relationships within data at scale

Arrow left icon
Product type Paperback
Published in Jan 2018
Publisher Packt
ISBN-13 9781788627306
Length 422 pages
Edition 1st Edition
Languages
Concepts
Arrow right icon
Author (1):
Arrow left icon
Giuseppe Ciaburro Giuseppe Ciaburro
Author Profile Icon Giuseppe Ciaburro
Giuseppe Ciaburro
Arrow right icon
View More author details
Toc

Table of Contents (11) Chapters Close

Preface 1. Getting Started with Regression 2. Basic Concepts – Simple Linear Regression FREE CHAPTER 3. More Than Just One Predictor – MLR 4. When the Response Falls into Two Categories – Logistic Regression 5. Data Preparation Using R Tools 6. Avoiding Overfitting Problems - Achieving Generalization 7. Going Further with Regression Models 8. Beyond Linearity – When Curving Is Much Better 9. Regression Analysis in Practice 10. Other Books You May Enjoy

Summary


In this final chapter, we have explored multiple linear regression, logistic regression, random forest regression, and neural network techniques applied to datasets resulting from real cases. We started from a random forest regression for the Boston dataset to predict the median value of owner-occupied homes for the test data. The random forests algorithm is based on the construction of many regression trees. Every single case is passed through all the trees in the forest; each of them provides a prediction. The final forecast is then made by averaging the predictions provided by individual regression trees. In accordance with what has been said, the tree response is an estimate of the dependent variable given the predictors.

Then, we have used a logistic regression technique to classify breast cancer. Logistic regression is a special case of a generalized linear model having as a link function the logit function. This is a regression model applied in cases where the dependent variable...

lock icon The rest of the chapter is locked
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $19.99/month. Cancel anytime
Banner background image