Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Newsletter Hub
Free Learning
Arrow right icon
timer SALE ENDS IN
0 Days
:
00 Hours
:
00 Minutes
:
00 Seconds
Arrow up icon
GO TO TOP
R Programming By Example

You're reading from   R Programming By Example Practical, hands-on projects to help you get started with R

Arrow left icon
Product type Paperback
Published in Dec 2017
Publisher Packt
ISBN-13 9781788292542
Length 470 pages
Edition 1st Edition
Languages
Arrow right icon
Authors (2):
Arrow left icon
Omar Trejo Navarro Omar Trejo Navarro
Author Profile Icon Omar Trejo Navarro
Omar Trejo Navarro
Omar Trejo Navarro Omar Trejo Navarro
Author Profile Icon Omar Trejo Navarro
Omar Trejo Navarro
Arrow right icon
View More author details
Toc

Table of Contents (12) Chapters Close

Preface 1. Introduction to R FREE CHAPTER 2. Understanding Votes with Descriptive Statistics 3. Predicting Votes with Linear Models 4. Simulating Sales Data and Working with Databases 5. Communicating Sales with Visualizations 6. Understanding Reviews with Text Analysis 7. Developing Automatic Presentations 8. Object-Oriented System to Track Cryptocurrencies 9. Implementing an Efficient Simple Moving Average 10. Adding Interactivity with Dashboards 11. Required Packages

Looking back at what we have achieved

As you know, up to now, we have benchmarked our code using a subset of the data that contains only the first 100 observations. However, as we saw at the beginning of the chapter, performance can vary for different implementations, depending on the size of the input. To bring together all our efforts in the chapter, we will create a couple of functions that will help us measure how the execution times for our implementations change as we use more observations from our data.

First, we bring our requirements into R, mainly, the microbenchmark and ggplot2 packages and the files that contain our implementations.

Next, we create the sma_performance() function that takes a symbol, a period, the original_data, a list named sizes whose elements are the number of observations that will be taken from original_data to test our implementations, a cluster...

lock icon The rest of the chapter is locked
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $19.99/month. Cancel anytime