Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Newsletter Hub
Free Learning
Arrow right icon
timer SALE ENDS IN
0 Days
:
00 Hours
:
00 Minutes
:
00 Seconds
Arrow up icon
GO TO TOP
Quantum Computing in Practice with Qiskit® and IBM Quantum Experience®

You're reading from   Quantum Computing in Practice with Qiskit® and IBM Quantum Experience® Practical recipes for quantum computer coding at the gate and algorithm level with Python

Arrow left icon
Product type Paperback
Published in Nov 2020
Publisher Packt
ISBN-13 9781838828448
Length 408 pages
Edition 1st Edition
Languages
Arrow right icon
Author (1):
Arrow left icon
Hassi Norlen Hassi Norlen
Author Profile Icon Hassi Norlen
Hassi Norlen
Arrow right icon
View More author details
Toc

Table of Contents (12) Chapters Close

Preface 1. Chapter 1: Preparing Your Environment 2. Chapter 2: Quantum Computing and Qubits with Python FREE CHAPTER 3. Chapter 3: IBM Quantum Experience® – Quantum Drag and Drop 4. Chapter 4: Starting at the Ground Level with Terra 5. Chapter 5: Touring the IBM Quantum® Hardware with Qiskit® 6. Chapter 6: Understanding the Qiskit® Gate Library 7. Chapter 7: Simulating Quantum Computers with Aer 8. Chapter 8: Cleaning Up Your Quantum Act with Ignis 9. Chapter 9: Grover's Search Algorithm 10. Chapter 10: Getting to Know Algorithms with Aqua 11. Other Books You May Enjoy

Comparing backends

The IBM Quantum® backends are all slightly different, from the number of qubits to the individual behavior and interaction between these. Depending on how you write your quantum program, you might want to run the code on a machine with certain characteristics.

The backend information that is returned by IBMQ is just a plain Python list and you can juggle the returned data with any other list. For example, you can write a Python script that finds the available IBM Quantum® backends, then run a quantum program on each of the backends and compare the results in a diagram that shows a rough measure of the quality of the backends' qubits.

In this recipe, we will use a simple Python loop to run a succession of identical Bell-state quantum programs on the available IBM Quantum® backends to get a rough estimate of the performance of the backends.

Getting ready

The file required for this recipe can be downloaded from here: https://github.com...

lock icon The rest of the chapter is locked
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $19.99/month. Cancel anytime