Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Save more on your purchases! discount-offer-chevron-icon
Savings automatically calculated. No voucher code required.
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Free Learning
Arrow right icon
Arrow up icon
GO TO TOP
Python High Performance, Second Edition

You're reading from   Python High Performance, Second Edition Build high-performing, concurrent, and distributed applications

Arrow left icon
Product type Paperback
Published in May 2017
Publisher Packt
ISBN-13 9781787282896
Length 270 pages
Edition 2nd Edition
Languages
Tools
Arrow right icon
Author (1):
Arrow left icon
Dr. Gabriele Lanaro Dr. Gabriele Lanaro
Author Profile Icon Dr. Gabriele Lanaro
Dr. Gabriele Lanaro
Arrow right icon
View More author details
Toc

Table of Contents (10) Chapters Close

Preface Benchmarking and Profiling Pure Python Optimizations FREE CHAPTER Fast Array Operations with NumPy and Pandas C Performance with Cython Exploring Compilers Implementing Concurrency Parallel Processing Distributed Processing Designing for High Performance

Fast Array Operations with NumPy and Pandas

NumPy is the de facto standard for scientific computing in Python. It extends Python with a flexible multidimensional array that allows fast and concise mathematical calculations.

NumPy provides common data structures and algorithms designed to express complex mathematical operations using a concise syntax. The multidimensional array, numpy.ndarray, is internally based on C arrays. Apart from the performance benefits, this choice allows NumPy code to easily interface with the existing C and FORTRAN routines; NumPy is helpful in bridging the gap between Python and the legacy code written using those languages.

In this chapter, we will learn how to create and manipulate NumPy arrays. We will also explore the NumPy broadcasting feature used to rewrite complex mathematical expressions in an efficient and succinct manner.

Pandas is a tool that relies heavily on NumPy and provides...

lock icon The rest of the chapter is locked
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $19.99/month. Cancel anytime
Banner background image