Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Save more on your purchases! discount-offer-chevron-icon
Savings automatically calculated. No voucher code required.
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Free Learning
Arrow right icon
Arrow up icon
GO TO TOP
Python Geospatial Development

You're reading from   Python Geospatial Development Develop sophisticated mapping applications from scratch using Python 3 tools for geospatial development

Arrow left icon
Product type Paperback
Published in May 2016
Publisher
ISBN-13 9781785288937
Length 446 pages
Edition 3rd Edition
Languages
Tools
Arrow right icon
Author (1):
Arrow left icon
Erik Westra Erik Westra
Author Profile Icon Erik Westra
Erik Westra
Arrow right icon
View More author details
Toc

Table of Contents (15) Chapters Close

Preface 1. Geospatial Development Using Python FREE CHAPTER 2. GIS 3. Python Libraries for Geospatial Development 4. Sources of Geospatial Data 5. Working with Geospatial Data in Python 6. Spatial Databases 7. Using Python and Mapnik to Generate Maps 8. Working with Spatial Data 9. Improving the DISTAL Application 10. Tools for Web-based Geospatial Development 11. Putting It All Together – a Complete Mapping System 12. ShapeEditor – Importing and Exporting Shapefiles 13. ShapeEditor – Selecting and Editing Features Index

Python

Python (http://python.org) is a modern, high-level language suitable for a wide variety of programming tasks. It is often used as a scripting language, automating and simplifying tasks at the operating system level, but it is equally suitable for building large and complex programs. Python has been used to write web-based systems, desktop applications, games, scientific programs, and even utilities and other higher-level parts of various operating systems.

Python supports a wide range of programming idioms, from straightforward procedural programming to object-oriented programming and functional programming.

Python is sometimes criticized for being an interpreted language, and can be slow compared to compiled languages such as C. However, the use of bytecode compilation and the fact that much of the heavy lifting is done by library code means that Python's performance is often surprisingly good—and there are many things you can do to improve the performance of your programs if you need to.

Open source versions of the Python interpreter are freely available for all major operating systems. Python is eminently suitable for all sorts of programming, from quick one-off scripts to building huge and complex systems. It can even be run in interactive (command-line) mode, allowing you to type in one-off commands and short programs and immediately see the results. This is ideal for doing quick calculations or figuring out how a particular library works.

One of the first things a developer notices about Python compared with other languages such as Java or C++ is how expressive the language is: what may take 20 or 30 lines of code in Java can often be written in half a dozen lines of code in Python. For example, imagine that you wanted to print a sorted list of the words that occur in a given piece of text. In Python, this is easy:

words = set(text.split())
for word in sorted(words):
    print(word)

Implementing this kind of task in other languages is often surprisingly difficult.

While the Python language itself makes programming quick and easy, allowing you to focus on the task at hand, the Python Standard Library makes programming even more efficient. This library makes it easy to do things such as converting date and time values, manipulating strings, downloading data from web sites, performing complex maths, working with e-mail messages, encoding and decoding data, XML parsing, data encryption, file manipulation, compressing and decompressing files, working with databases—the list goes on. What you can do with the Python Standard Library is truly amazing.

As well as the built-in modules in the Python Standard Library, it is easy to download and install custom modules, which could be written either in Python or C. The Python Package Index (http://pypi.python.org) provides thousands of additional modules that you can download and install. And if this isn't enough, many other systems provide Python bindings to allow you to access them directly from within your programs. We will be making heavy use of Python bindings in this book.

Python is in many ways an ideal programming language. Once you are familiar with the language and have used it a few times, you'll find it incredibly easy to write programs to solve various tasks. Rather than getting buried in a morass of type definitions and low-level string manipulation, you can simply concentrate on what you want to achieve. You almost end up thinking directly in Python code. Programming in Python is straightforward, efficient, and, dare I say it, fun.

Python 3

There are two main flavors of Python in use today: the Python 2.x series has been around for many years and is still widely used today, while Python 3.x isn't backward compatible with Python 2 and is becoming more and more popular as it is seen as the main version of Python going forward.

One of the main things holding back the adoption of Python 3 is the lack of support for third-party libraries. This has been particularly acute for Python libraries used for geospatial development, which are often dependent on individual developers or have requirements that were not compatible with Python 3 for quite a long time. However, all the major libraries used in this book can now be run using Python 3, and so all the code examples in this book have been converted to use Python 3 syntax.

If your computer runs Linux or Mac OS X, then you can use Python 3 with all these libraries directly. If, however, your computer runs MS Windows, then Python 3 compatibility is more problematic. In this case, you have two options: you can attempt to compile the libraries yourself to work with Python 3 or you can revert to using Python 2 and make adjustments to the example code as required. Fortunately, the syntax differences between Python 2 and Python 3 are quite straightforward, so not many changes will be required if you do choose to use Python 2.x rather than Python 3.x.

You have been reading a chapter from
Python Geospatial Development - Third Edition
Published in: May 2016
Publisher:
ISBN-13: 9781785288937
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $19.99/month. Cancel anytime
Banner background image