Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Save more on your purchases! discount-offer-chevron-icon
Savings automatically calculated. No voucher code required.
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Free Learning
Arrow right icon
Arrow up icon
GO TO TOP
Python for Finance Cookbook – Second Edition

You're reading from   Python for Finance Cookbook – Second Edition Over 80 powerful recipes for effective financial data analysis

Arrow left icon
Product type Paperback
Published in Dec 2022
Publisher Packt
ISBN-13 9781803243191
Length 740 pages
Edition 2nd Edition
Languages
Tools
Arrow right icon
Author (1):
Arrow left icon
Eryk Lewinson Eryk Lewinson
Author Profile Icon Eryk Lewinson
Eryk Lewinson
Arrow right icon
View More author details
Toc

Table of Contents (18) Chapters Close

Preface 1. Acquiring Financial Data FREE CHAPTER 2. Data Preprocessing 3. Visualizing Financial Time Series 4. Exploring Financial Time Series Data 5. Technical Analysis and Building Interactive Dashboards 6. Time Series Analysis and Forecasting 7. Machine Learning-Based Approaches to Time Series Forecasting 8. Multi-Factor Models 9. Modeling Volatility with GARCH Class Models 10. Monte Carlo Simulations in Finance 11. Asset Allocation 12. Backtesting Trading Strategies 13. Applied Machine Learning: Identifying Credit Default 14. Advanced Concepts for Machine Learning Projects 15. Deep Learning in Finance 16. Other Books You May Enjoy
17. Index

Identifying and dealing with missing values

In most real-life cases, we do not work with clean, complete data. One of the potential problems we are bound to encounter is that of missing values. We can categorize missing values by the reason they occur:

  • Missing completely at random (MCAR)—The reason for the missing data is unrelated to the rest of the data. An example could be a respondent accidentally missing a question in a survey.
  • Missing at random (MAR)—The missingness of the data can be inferred from data in another column(-s). For example, a missing response to a certain survey question can be to some extent determined conditionally by other factors such as gender, age, lifestyle, etc.
  • Missing not at random (MNAR)—When there is some underlying reason for the missing values. For example, people with very high incomes tend to be hesitant about revealing it.
  • Structurally missing data—Often a subset of MNAR, the data is missing because of a logical reason...
lock icon The rest of the chapter is locked
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $19.99/month. Cancel anytime
Banner background image