Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Newsletter Hub
Free Learning
Arrow right icon
timer SALE ENDS IN
0 Days
:
00 Hours
:
00 Minutes
:
00 Seconds
Arrow up icon
GO TO TOP
Principles of Data Science

You're reading from   Principles of Data Science Understand, analyze, and predict data using Machine Learning concepts and tools

Arrow left icon
Product type Paperback
Published in Dec 2018
Publisher Packt
ISBN-13 9781789804546
Length 424 pages
Edition 2nd Edition
Languages
Tools
Arrow right icon
Authors (3):
Arrow left icon
Sunil Kakade Sunil Kakade
Author Profile Icon Sunil Kakade
Sunil Kakade
Sinan Ozdemir Sinan Ozdemir
Author Profile Icon Sinan Ozdemir
Sinan Ozdemir
Marco Tibaldeschi Marco Tibaldeschi
Author Profile Icon Marco Tibaldeschi
Marco Tibaldeschi
Arrow right icon
View More author details
Toc

Table of Contents (17) Chapters Close

Preface 1. How to Sound Like a Data Scientist FREE CHAPTER 2. Types of Data 3. The Five Steps of Data Science 4. Basic Mathematics 5. Impossible or Improbable - A Gentle Introduction to Probability 6. Advanced Probability 7. Basic Statistics 8. Advanced Statistics 9. Communicating Data 10. How to Tell If Your Toaster Is Learning – Machine Learning Essentials 11. Predictions Don't Grow on Trees - or Do They? 12. Beyond the Essentials 13. Case Studies 14. Building Machine Learning Models with Azure Databricks and Azure Machine Learning service Other Books You May Enjoy Index

Sampling distributions

In Chapter 7, Basic Statistics, we mentioned how much we love it when data follows the normal distribution. One of the reasons for this is that many statistical tests (including the ones we will use in this chapter) rely on data that follows a normal pattern, and for the most part, a lot of real-world data is not normal (surprised?). Take our employee break data, for example—you might think I was just being fancy creating data using the Poisson distribution, but I had a reason for this. I specifically wanted non-normal data, as shown here:

pd.DataFrame(breaks).hist(bins=50,range=(5,100))
Sampling distributions

As you can see, our data is definitely not following a normal, distribution; it appears to be bi-modal, which means that there are two peaks of break times, at around 25 and 70 minutes. As our data is not normal, many of the most popular statistics tests may not apply; however, if we follow the given procedure, we can create normal data! Think I'm crazy? Well, see for yourself...

lock icon The rest of the chapter is locked
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $19.99/month. Cancel anytime