Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Save more on your purchases now! discount-offer-chevron-icon
Savings automatically calculated. No voucher code required.
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Conferences
Free Learning
Arrow right icon
Arrow up icon
GO TO TOP
OpenGL 4 Shading Language Cookbook

You're reading from   OpenGL 4 Shading Language Cookbook Build high-quality, real-time 3D graphics with OpenGL 4.6, GLSL 4.6 and C++17

Arrow left icon
Product type Paperback
Published in Sep 2018
Publisher Packt
ISBN-13 9781789342253
Length 472 pages
Edition 3rd Edition
Languages
Tools
Arrow right icon
Authors (2):
Arrow left icon
David A Wolff David A Wolff
Author Profile Icon David A Wolff
David A Wolff
David Wolff David Wolff
Author Profile Icon David Wolff
David Wolff
Arrow right icon
View More author details
Toc

Table of Contents (13) Chapters Close

Preface 1. Getting Started with GLSL FREE CHAPTER 2. Working with GLSL Programs 3. The Basics of GLSL Shaders 4. Lighting and Shading 5. Using Textures 6. Image Processing and Screen Space Techniques 7. Using Geometry and Tessellation Shaders 8. Shadows 9. Using Noise in Shaders 10. Particle Systems and Animation 11. Using Compute Shaders 12. Other Books You May Enjoy

Creating a noise texture using GLM


To create a texture for use as a source of noise, we need some way to generate noise values. Implementing a proper noise generator from scratch can be a fairly daunting task. Luckily, GLM provides some functions for noise generation that are straightforward and easy to use.

In this recipe, we'll use GLM to generate a 2D texture of noise values created using a Perlin noise generator. GLM can generate 2D, 3D, and 4D Perlin noise via the glm::perlin function.

It is a common practice to use Perlin noise by summing the values of the noise function with increasing frequencies and decreasing amplitudes. Each frequency is commonly referred to as an octave (double the frequency). For example, in the following image, we show the results of the 2D Perlin noise function sampled at four different octaves. The sampling frequencies increase from left to right.

The leftmost image in the following image is the function sampled at our base frequency, and each image to the right...

lock icon The rest of the chapter is locked
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at €18.99/month. Cancel anytime