Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Save more on your purchases! discount-offer-chevron-icon
Savings automatically calculated. No voucher code required.
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Free Learning
Arrow right icon
Arrow up icon
GO TO TOP
Neural Networks with R

You're reading from   Neural Networks with R Build smart systems by implementing popular deep learning models in R

Arrow left icon
Product type Paperback
Published in Sep 2017
Publisher Packt
ISBN-13 9781788397872
Length 270 pages
Edition 1st Edition
Languages
Arrow right icon
Authors (2):
Arrow left icon
Balaji Venkateswaran Balaji Venkateswaran
Author Profile Icon Balaji Venkateswaran
Balaji Venkateswaran
Giuseppe Ciaburro Giuseppe Ciaburro
Author Profile Icon Giuseppe Ciaburro
Giuseppe Ciaburro
Arrow right icon
View More author details
Toc

Table of Contents (8) Chapters Close

Preface 1. Neural Network and Artificial Intelligence Concepts 2. Learning Process in Neural Networks FREE CHAPTER 3. Deep Learning Using Multilayer Neural Networks 4. Perceptron Neural Network Modeling – Basic Models 5. Training and Visualizing a Neural Network in R 6. Recurrent and Convolutional Neural Networks 7. Use Cases of Neural Networks – Advanced Topics

Neural Network and Artificial Intelligence Concepts

From the scientific and philosophical studies conducted over the centuries, special mechanisms have been identified that are the basis of human intelligence. Taking inspiration from their operations, it was possible to create machines that imitate part of these mechanisms. The problem is that they have not yet succeeded in imitating and integrating all of them, so the Artificial Intelligence (AI) systems we have are largely incomplete.

A decisive step in the improvement of such machines came from the use of so-called Artificial Neural Networks (ANNs) that, starting from the mechanisms regulating natural neural networks, plan to simulate human thinking. Software can now imitate the mechanisms needed to win a chess match or to translate text into a different language in accordance with its grammatical rules.

This chapter introduces the basic theoretical concepts of ANN and AI. Fundamental understanding of the following is expected:

  • Basic high school mathematics; differential calculus and functions such as sigmoid
  • R programming and usage of R libraries

We will go through the basics of neural networks and try out one model using R. This chapter is a foundation for neural networks and all the subsequent chapters.

We will cover the following topics in this chapter:

  • ANN concepts
  • Neurons, perceptron, and multilayered neural networks
  • Bias, weights, activation functions, and hidden layers
  • Forward and backpropagation methods
  • Brief overview of Graphics Processing Unit (GPU)

At the end of the chapter, you will be able to recognize the different neural network algorithms and tools which R provides to handle them.

lock icon The rest of the chapter is locked
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $19.99/month. Cancel anytime
Banner background image