Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Save more on your purchases! discount-offer-chevron-icon
Savings automatically calculated. No voucher code required.
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Free Learning
Arrow right icon
Arrow up icon
GO TO TOP
Modern Distributed Tracing in .NET

You're reading from   Modern Distributed Tracing in .NET A practical guide to observability and performance analysis for microservices

Arrow left icon
Product type Paperback
Published in Jun 2023
Publisher Packt
ISBN-13 9781837636136
Length 336 pages
Edition 1st Edition
Tools
Arrow right icon
Author (1):
Arrow left icon
Liudmila Molkova Liudmila Molkova
Author Profile Icon Liudmila Molkova
Liudmila Molkova
Arrow right icon
View More author details
Toc

Table of Contents (23) Chapters Close

Preface 1. Part 1: Introducing Distributed Tracing
2. Chapter 1: Observability Needs of Modern Applications FREE CHAPTER 3. Chapter 2: Native Monitoring in .NET 4. Chapter 3: The .NET Observability Ecosystem 5. Chapter 4: Low-Level Performance Analysis with Diagnostic Tools 6. Part 2: Instrumenting .NET Applications
7. Chapter 5: Configuration and Control Plane 8. Chapter 6: Tracing Your Code 9. Chapter 7: Adding Custom Metrics 10. Chapter 8: Writing Structured and Correlated Logs 11. Part 3: Observability for Common Cloud Scenarios
12. Chapter 9: Best Practices 13. Chapter 10: Tracing Network Calls 14. Chapter 11: Instrumenting Messaging Scenarios 15. Chapter 12: Instrumenting Database Calls 16. Part 4: Implementing Distributed Tracing in Your Organization
17. Chapter 13: Driving Change 18. Chapter 14: Creating Your Own Conventions 19. Chapter 15: Instrumenting Brownfield Applications 20. Assessments 21. Index 22. Other Books You May Enjoy

Profiling

If we analyze individual traces corresponding to thread pool starvation or memory leaks, we will not see anything special. They are fast under a small load and get slower or fail when the load increases.

However, some performance issues only affect certain scenarios, at least under typical load. Locks and inefficient code are examples of such operations.

We rarely instrument local operations with distributed tracing under the assumption that local calls are fast and exceptions have enough information for us to investigate failures.

But what happens when we have compute-heavy or just inefficient code in the service? If we look at distributed traces, we’ll see high latency and gaps between spans, but we wouldn’t know why it happens.

We know ahead of time that some operations, such as complex algorithms or I/O, can take a long time to complete or fail, so we can deliberately instrument them with tracing or just write a log record. But we rarely introduce...

lock icon The rest of the chapter is locked
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $19.99/month. Cancel anytime
Banner background image