Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Free Learning
Arrow right icon
Arrow up icon
GO TO TOP
Modern Computer Vision with PyTorch

You're reading from   Modern Computer Vision with PyTorch Explore deep learning concepts and implement over 50 real-world image applications

Arrow left icon
Product type Paperback
Published in Nov 2020
Publisher Packt
ISBN-13 9781839213472
Length 824 pages
Edition 1st Edition
Languages
Tools
Arrow right icon
Authors (2):
Arrow left icon
Yeshwanth Reddy Yeshwanth Reddy
Author Profile Icon Yeshwanth Reddy
Yeshwanth Reddy
V Kishore Ayyadevara V Kishore Ayyadevara
Author Profile Icon V Kishore Ayyadevara
V Kishore Ayyadevara
Arrow right icon
View More author details
Toc

Table of Contents (25) Chapters Close

Preface 1. Section 1 - Fundamentals of Deep Learning for Computer Vision
2. Artificial Neural Network Fundamentals FREE CHAPTER 3. PyTorch Fundamentals 4. Building a Deep Neural Network with PyTorch 5. Section 2 - Object Classification and Detection
6. Introducing Convolutional Neural Networks 7. Transfer Learning for Image Classification 8. Practical Aspects of Image Classification 9. Basics of Object Detection 10. Advanced Object Detection 11. Image Segmentation 12. Applications of Object Detection and Segmentation 13. Section 3 - Image Manipulation
14. Autoencoders and Image Manipulation 15. Image Generation Using GANs 16. Advanced GANs to Manipulate Images 17. Section 4 - Combining Computer Vision with Other Techniques
18. Training with Minimal Data Points 19. Combining Computer Vision and NLP Techniques 20. Combining Computer Vision and Reinforcement Learning 21. Moving a Model to Production 22. Using OpenCV Utilities for Image Analysis 23. Other Books You May Enjoy Appendix

Summarizing the training process of a neural network

Training a neural network is a process of coming up with optimal weights for a neural network architecture by repeating the two key steps, forward-propagation and backpropagation with a given learning rate.

In forward-propagation, we apply a set of weights to the input data, pass it through the defined hidden layers, perform the defined nonlinear activation on the hidden layers' output, and then connect the hidden layer to the output layer by multiplying the hidden-layer node values with another set of weights to estimate the output value. Then, we finally calculate the overall loss corresponding to the given set of weights. For the first forward-propagation, the values of the weights are initialized randomly.

In backpropagation, we decrease the loss value (error) by adjusting weights in a direction that reduces the overall loss. Further, the magnitude of the weight update is the gradient times the learning rate.

The process of feedforward propagation and backpropagation is repeated until we achieve as minimal a loss as possible. This implies that, at the end of the training, the neural network has adjusted its weights such that it predicts the output that we want it to predict. In the preceding toy example, after training, the updated network will predict a value of 0 as output when {1,1} is fed as input as it is trained to achieve that.

You have been reading a chapter from
Modern Computer Vision with PyTorch
Published in: Nov 2020
Publisher: Packt
ISBN-13: 9781839213472
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $19.99/month. Cancel anytime
Banner background image