Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Save more on your purchases now! discount-offer-chevron-icon
Savings automatically calculated. No voucher code required.
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Conferences
Free Learning
Arrow right icon
Arrow up icon
GO TO TOP
Mastering Pandas for Finance

You're reading from   Mastering Pandas for Finance Master pandas, an open source Python Data Analysis Library, for financial data analysis

Arrow left icon
Product type Paperback
Published in May 2015
Publisher Packt
ISBN-13 9781783985104
Length 298 pages
Edition 1st Edition
Languages
Tools
Arrow right icon
Author (1):
Arrow left icon
Michael Heydt Michael Heydt
Author Profile Icon Michael Heydt
Michael Heydt
Arrow right icon
View More author details
Toc

Table of Contents (11) Chapters Close

Preface 1. Getting Started with pandas Using Wakari.io FREE CHAPTER 2. Introducing the Series and DataFrame 3. Reshaping, Reorganizing, and Aggregating 4. Time-series 5. Time-series Stock Data 6. Trading Using Google Trends 7. Algorithmic Trading 8. Working with Options 9. Portfolios and Risk Index

Grouping and aggregating

Data in pandas can be easily split into groups and then summarized using various statistical and quantitative calculations. This process in pandas nomenclature is often referred to as the split-apply-combine pattern.

In this section, we will look at using this pattern as applied to stock data. We will split the data by various time and symbol combinations and then apply statistical operations to begin analyzing the risk and return on our sample data.

Splitting

Objects in pandas are split into groups using the .groupby() method. To demonstrate this, we will use the stock price data introduced earlier in the chapter but slightly reorganized to facilitate understanding of the grouping process:

In [36]:
   s4g = combined[['Symbol', 'AdjClose']].reset_index()
   s4g.insert(1, 'Year', pd.DatetimeIndex(s4g['Date']).year)
   s4g.insert(2, 'Month[:5]',pd.DatetimeIndex(s4g['Date']).month)
   s4g[:5]

Out[36]:
      ...
lock icon The rest of the chapter is locked
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $19.99/month. Cancel anytime