Search icon CANCEL
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Conferences
Free Learning
Arrow right icon
Arrow up icon
GO TO TOP
Mastering Machine Learning Algorithms

You're reading from   Mastering Machine Learning Algorithms Expert techniques to implement popular machine learning algorithms and fine-tune your models

Arrow left icon
Product type Paperback
Published in May 2018
Publisher Packt
ISBN-13 9781788621113
Length 576 pages
Edition 1st Edition
Arrow right icon
Author (1):
Arrow left icon
Giuseppe Bonaccorso Giuseppe Bonaccorso
Author Profile Icon Giuseppe Bonaccorso
Giuseppe Bonaccorso
Arrow right icon
View More author details
Toc

Table of Contents (17) Chapters Close

Preface 1. Machine Learning Model Fundamentals 2. Introduction to Semi-Supervised Learning FREE CHAPTER 3. Graph-Based Semi-Supervised Learning 4. Bayesian Networks and Hidden Markov Models 5. EM Algorithm and Applications 6. Hebbian Learning and Self-Organizing Maps 7. Clustering Algorithms 8. Ensemble Learning 9. Neural Networks for Machine Learning 10. Advanced Neural Models 11. Autoencoders 12. Generative Adversarial Networks 13. Deep Belief Networks 14. Introduction to Reinforcement Learning 15. Advanced Policy Estimation Algorithms 16. Other Books You May Enjoy

EM algorithm


The EM algorithm is a generic framework that can be employed in the optimization of many generative models. It was originally proposed in Maximum likelihood from incomplete data via the em algorithm, Dempster A. P., Laird N. M., Rubin D. B., Journal of the Royal Statistical Society, B, 39(1):1–38, 11/1977, where the authors also proved its convergence at different levels of genericity.

For our purposes, we are going to consider a dataset, X, and a set of latent variables, Z, that we cannot observe. They can be part of the original model or introduced artificially as a trick to simplify the problem. A generative model parameterized with the vector θ has a log-likelihood equal to the following:

Of course, a large log-likelihood implies that the model is able to generate the original distribution with a small error. Therefore, our goal is to find the optimal set of parameters θ that maximizes the marginalized log-likelihood (we need to sum—or integrate out for continuous variables...

lock icon The rest of the chapter is locked
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at €18.99/month. Cancel anytime