Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Free Learning
Arrow right icon
Arrow up icon
GO TO TOP
Mastering Azure Machine Learning

You're reading from   Mastering Azure Machine Learning Perform large-scale end-to-end advanced machine learning in the cloud with Microsoft Azure Machine Learning

Arrow left icon
Product type Paperback
Published in Apr 2020
Publisher Packt
ISBN-13 9781789807554
Length 436 pages
Edition 1st Edition
Languages
Tools
Arrow right icon
Authors (2):
Arrow left icon
Christoph Körner Christoph Körner
Author Profile Icon Christoph Körner
Christoph Körner
Kaijisse Waaijer Kaijisse Waaijer
Author Profile Icon Kaijisse Waaijer
Kaijisse Waaijer
Arrow right icon
View More author details
Toc

Table of Contents (20) Chapters Close

Preface Section 1: Azure Machine Learning
1. Building an end-to-end machine learning pipeline in Azure FREE CHAPTER 2. Choosing a machine learning service in Azure Section 2: Experimentation and Data Preparation
3. Data experimentation and visualization using Azure 4. ETL, data preparation, and feature extraction 5. Azure Machine Learning pipelines 6. Advanced feature extraction with NLP Section 3: Training Machine Learning Models
7. Building ML models using Azure Machine Learning 8. Training deep neural networks on Azure 9. Hyperparameter tuning and Automated Machine Learning 10. Distributed machine learning on Azure 11. Building a recommendation engine in Azure Section 4: Optimization and Deployment of Machine Learning Models
12. Deploying and operating machine learning models 13. MLOps—DevOps for machine learning 14. What's next? Index

Introduction to recommender engines

In today's digital world, recommendation engines are ubiquitous among many industries. Many online businesses, such as streaming, shopping, news, and social media, rely at their core on recommending the most relevant articles, news, and items to their users. How often have you clicked on a suggested video on YouTube, scrolled through your Facebook feed, listened to a personalized playlist on Spotify, or clicked on a recommended article on Amazon?

If you ask yourself what the term relevant means for the different services and industries, you are on the right track. In order to recommend relevant information to the user, we need to first define a relevancy metric, and a way to describe and compare different items and their similarity. These two properties are the key to understanding the different recommendation engines. We will learn more about this in the following sections of this chapter.

While the purpose of a recommendation engine...

lock icon The rest of the chapter is locked
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $19.99/month. Cancel anytime
Banner background image