Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Save more on your purchases now! discount-offer-chevron-icon
Savings automatically calculated. No voucher code required.
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Conferences
Free Learning
Arrow right icon
Machine Learning with scikit-learn Quick Start Guide
Machine Learning with scikit-learn Quick Start Guide

Machine Learning with scikit-learn Quick Start Guide: Classification, regression, and clustering techniques in Python

eBook
€13.98 €19.99
Paperback
€24.99
Subscription
Free Trial
Renews at €18.99p/m

What do you get with Print?

Product feature icon Instant access to your digital eBook copy whilst your Print order is Shipped
Product feature icon Paperback book shipped to your preferred address
Product feature icon Download this book in EPUB and PDF formats
Product feature icon Access this title in our online reader with advanced features
Product feature icon DRM FREE - Read whenever, wherever and however you want
Table of content icon View table of contents Preview book icon Preview Book

Machine Learning with scikit-learn Quick Start Guide

Predicting Categories with K-Nearest Neighbors

The k-Nearest Neighbors (k-NN) algorithm is a form of supervised machine learning that is used to predict categories. In this chapter, you will learn about the following:

  • Preparing a dataset for machine learning with scikit-learn
  • How the k-NN algorithm works under the hood
  • Implementing your first k-NN algorithm to predict a fraudulent transaction
  • Fine-tuning the parameters of the k-NN algorithm
  • Scaling your data for optimized performance

The k-NN algorithm has a wide range of applications in the field of classification and supervised machine learning. Some of the real-world applications for this algorithm include predicting loan defaults and credit-based fraud in the financial industry and predicting whether a patient has cancer in the healthcare industry.

This book's design facilitates the implementation of a robust machine...

Technical requirements

Preparing a dataset for machine learning with scikit-learn

The first step to implementing any machine learning algorithm with scikit-learn is data preparation. Scikit-learn comes with a set of constraints to implementation that will be discussed later in this section. The dataset that we will be using is based on mobile payments and is found on the world's most popular competitive machine learning website – Kaggle.

You can download the dataset from: https://www.kaggle.com/ntnu-testimon/paysim1.

Once downloaded, open a new Jupyter Notebook by using the following code in Terminal (macOS/Linux) or Anaconda Prompt/PowerShell (Windows):

Jupyter Notebook

The fundamental goal of this dataset is to predict whether a mobile transaction is fraudulent. In order to do this, we need to first have a brief understanding of the contents of our data. In order to explore the dataset...

The k-NN algorithm

Mathematically speaking, the k-NN algorithm is one of the most simple machine learning algorithms out there. See the following diagram for a visual overview of how it works:

How k-NN works under the hood

The stars in the preceding diagram represent new data points. If we built a k-NN algorithm with three neighbors, then the stars would search for the three data points that are closest to it.

In the lower-left case, the star sees two triangles and one circle. Therefore, the algorithm would classify the star as a triangle since the number of triangles was greater than the number of circles.

In the upper-right case, the star sees two circles and one circle. Therefore, the algorithm will classify the star as a circle since the number of circles was greater than the number of triangles.

The real algorithm does this in a very probabilistic manner and picks the...

Implementing the k-NN algorithm using scikit-learn

In the following section, we will implement the first version of the k-NN algorithm and assess its initial accuracy. When implementing machine learning algorithms using scikit-learn, it is always a good practice to implement algorithms without fine-tuning or optimizing any of the associated parameters first in order to evaluate how well it performs.

In the following section, you will learn how to do the following:

  • Split your data into training and test sets
  • Implement the first version of the algorithm on the data
  • Evaluate the accuracy of your model using a k-NN score

Splitting the data into training and test sets

The idea of training and test sets is fundamental to every...

Fine-tuning the parameters of the k-NN algorithm

In the previous section, we arbitrarily set the number of neighbors to three while initializing the k-NN classifier. However, is this the optimal value? Well, it could be, since we obtained a relatively high accuracy score in the test set.

Our goal is to create a machine learning model that does not overfit or underfit the data. Overfitting the data means that the model has been trained very specifically to the training examples provided and will not generalize well to cases/examples of data that it has not encountered before. For instance, we might have fit the model very specifically to the training data, with the test cases being also very similar to the training data. Thus, the model would have been able to perform very well and produce a very high value of accuracy.

Underfitting is another extreme case, in which the model...

Scaling for optimized performance

The k-NN algorithm is an algorithm that works based on distance. When a new data point is thrown into the dataset and the algorithm is given the task of classifying this new data point, it uses distance to check the points that are closest to it.

If we have features that have different ranges of values – for example, feature one has a range between 0 to 800 while feature two has a range between one to five – this distance metric does not make sense anymore. We want all the features to have the same range of values so that the distance metric is on level terms across all features.

One way to do this is to subtract each value of each feature by the mean of that feature and divide by the variance of that feature. This is called standardization:

We can do this for our dataset by using the following code:

from sklearn.preprocessing...

Summary

This chapter was fundamental in helping you prepare a dataset for machine learning with scikit-learn. You have learned about the constraints that are imposed when you do machine learning with scikit-learn and how to create a dataset that is perfect for scikit-learn.

You have also learned how the k-NN algorithm works behind the scenes and have implemented a version of it using scikit-learn to predict whether a transaction was fraudulent. You then learned how to optimize the parameters of the algorithm using the popular GridSearchCV algorithm. Finally, you have learnt how to standardize and scale your data in order to optimize the performance of your model.

In the next chapter, you will learn how to classify fraudulent transactions yet again with a new algorithm – the logistic regression algorithm!

Left arrow icon Right arrow icon
Download code icon Download Code

Key benefits

  • Build your first machine learning model using scikit-learn
  • Train supervised and unsupervised models using popular techniques such as classification, regression and clustering
  • Understand how scikit-learn can be applied to different types of machine learning problems

Description

Scikit-learn is a robust machine learning library for the Python programming language. It provides a set of supervised and unsupervised learning algorithms. This book is the easiest way to learn how to deploy, optimize, and evaluate all of the important machine learning algorithms that scikit-learn provides. This book teaches you how to use scikit-learn for machine learning. You will start by setting up and configuring your machine learning environment with scikit-learn. To put scikit-learn to use, you will learn how to implement various supervised and unsupervised machine learning models. You will learn classification, regression, and clustering techniques to work with different types of datasets and train your models. Finally, you will learn about an effective pipeline to help you build a machine learning project from scratch. By the end of this book, you will be confident in building your own machine learning models for accurate predictions.

Who is this book for?

This book is for aspiring machine learning developers who want to get started with scikit-learn. Intermediate knowledge of Python programming and some fundamental knowledge of linear algebra and probability will help.

What you will learn

  • Learn how to work with all scikit-learn s machine learning algorithms
  • Install and set up scikit-learn to build your first machine learning model
  • Employ Unsupervised Machine Learning Algorithms to cluster unlabelled data into groups
  • Perform classification and regression machine learning
  • Use an effective pipeline to build a machine learning project from scratch
Estimated delivery fee Deliver to Czechia

Premium delivery 7 - 10 business days

€25.95
(Includes tracking information)

Product Details

Country selected
Publication date, Length, Edition, Language, ISBN-13
Publication date : Oct 30, 2018
Length: 172 pages
Edition : 1st
Language : English
ISBN-13 : 9781789343700
Category :
Languages :

What do you get with Print?

Product feature icon Instant access to your digital eBook copy whilst your Print order is Shipped
Product feature icon Paperback book shipped to your preferred address
Product feature icon Download this book in EPUB and PDF formats
Product feature icon Access this title in our online reader with advanced features
Product feature icon DRM FREE - Read whenever, wherever and however you want
Estimated delivery fee Deliver to Czechia

Premium delivery 7 - 10 business days

€25.95
(Includes tracking information)

Product Details

Publication date : Oct 30, 2018
Length: 172 pages
Edition : 1st
Language : English
ISBN-13 : 9781789343700
Category :
Languages :

Packt Subscriptions

See our plans and pricing
Modal Close icon
€18.99 billed monthly
Feature tick icon Unlimited access to Packt's library of 7,000+ practical books and videos
Feature tick icon Constantly refreshed with 50+ new titles a month
Feature tick icon Exclusive Early access to books as they're written
Feature tick icon Solve problems while you work with advanced search and reference features
Feature tick icon Offline reading on the mobile app
Feature tick icon Simple pricing, no contract
€189.99 billed annually
Feature tick icon Unlimited access to Packt's library of 7,000+ practical books and videos
Feature tick icon Constantly refreshed with 50+ new titles a month
Feature tick icon Exclusive Early access to books as they're written
Feature tick icon Solve problems while you work with advanced search and reference features
Feature tick icon Offline reading on the mobile app
Feature tick icon Choose a DRM-free eBook or Video every month to keep
Feature tick icon PLUS own as many other DRM-free eBooks or Videos as you like for just €5 each
Feature tick icon Exclusive print discounts
€264.99 billed in 18 months
Feature tick icon Unlimited access to Packt's library of 7,000+ practical books and videos
Feature tick icon Constantly refreshed with 50+ new titles a month
Feature tick icon Exclusive Early access to books as they're written
Feature tick icon Solve problems while you work with advanced search and reference features
Feature tick icon Offline reading on the mobile app
Feature tick icon Choose a DRM-free eBook or Video every month to keep
Feature tick icon PLUS own as many other DRM-free eBooks or Videos as you like for just €5 each
Feature tick icon Exclusive print discounts

Frequently bought together


Stars icon
Total 86.97
Machine Learning with scikit-learn Quick Start Guide
€24.99
Mastering Predictive Analytics with scikit-learn and TensorFlow
€24.99
Ensemble Machine Learning Cookbook
€36.99
Total 86.97 Stars icon

Table of Contents

9 Chapters
Introducing Machine Learning with scikit-learn Chevron down icon Chevron up icon
Predicting Categories with K-Nearest Neighbors Chevron down icon Chevron up icon
Predicting Categories with Logistic Regression Chevron down icon Chevron up icon
Predicting Categories with Naive Bayes and SVMs Chevron down icon Chevron up icon
Predicting Numeric Outcomes with Linear Regression Chevron down icon Chevron up icon
Classification and Regression with Trees Chevron down icon Chevron up icon
Clustering Data with Unsupervised Machine Learning Chevron down icon Chevron up icon
Performance Evaluation Methods Chevron down icon Chevron up icon
Other Books You May Enjoy Chevron down icon Chevron up icon

Customer reviews

Rating distribution
Full star icon Full star icon Full star icon Full star icon Half star icon 4.2
(5 Ratings)
5 star 60%
4 star 20%
3 star 0%
2 star 20%
1 star 0%
Sven T Sep 13, 2023
Full star icon Full star icon Full star icon Full star icon Full star icon 5
Das Buch ist sehr verständlich und didaktisch super aufbereitet. Ein kleiner Fehler im Code wurde über den Errata Prozess schnell adressiert, geklärt und für die Zukunft korrigiert (auch online entsprechend abrufbar). Sehr netter Kontakt mit Verlag und Autor. Es ist nicht mein erstes Buch zu diesem Thema, aber wirklich top geschrieben. Die entsprechenden Bibliotheken werden super anhand von Beispielen erklärt. Theorie kommt auch nicht zu kurz, allerdings konzentriert sich der Autor ums "Machen", also sehr praxisorientiert. Absolute Kaufempfehlung!
Amazon Verified review Amazon
MyAmazonReviewNameHere May 30, 2021
Full star icon Full star icon Full star icon Full star icon Full star icon 5
Well written and very useful.
Amazon Verified review Amazon
Scott Zasadil Dec 29, 2020
Full star icon Full star icon Empty star icon Empty star icon Empty star icon 2
Whoever reviewed this book for Packt publishing did not do a good job of it as a number of obvious mistakes stand out: 1) At the conclusion of Chapter 3, we are told that the topic of Chapter 4 will be decision trees and random forests, which don't appear until Chapter 6; 2) In chapter 5, the author uses a dataset with a *binary* target of isFraud to explain not only Linear Regression but also Ridge Regression and Lasso Regression, as well. Logistic regression - not linear regression - is best suited for binary classification problems and scikit-learn actually has RidgeClassifier - which the author does not use - for performing a classification problem using Ridge regression. Also, the Lasso code on page 67 will not run as intended as the author uses a variable called ridge_regression in it. That is, it uses the results from the previous Ridge Regression code to evaluate the Lasso Regression work; 3) The explanation of how the Random Forest algorithm operates on page 80 is incorrect.There are some good sections - in particular the chapter on Performance Evaluation Methods, but because the reader has to be on the lookout for what should have been easily caught errors, this is not a book for someone who is just getting started with scikit-learn.
Amazon Verified review Amazon
Donald Kalley Apr 09, 2020
Full star icon Full star icon Full star icon Full star icon Full star icon 5
Now I am understanding Scikit learn. The approach to only focus on all the different algorithms was a smart move. Now I will proceed to purchase another book(Bokeh) from the author. Great job!
Amazon Verified review Amazon
Keolohilani L. Mar 06, 2019
Full star icon Full star icon Full star icon Full star icon Empty star icon 4
I am liking this book so far. It is making some of the mathematically difficult concepts easier to follow with some code to work along. I hope to get through this book in the next couple of days.
Amazon Verified review Amazon
Get free access to Packt library with over 7500+ books and video courses for 7 days!
Start Free Trial

FAQs

What is the delivery time and cost of print book? Chevron down icon Chevron up icon

Shipping Details

USA:

'

Economy: Delivery to most addresses in the US within 10-15 business days

Premium: Trackable Delivery to most addresses in the US within 3-8 business days

UK:

Economy: Delivery to most addresses in the U.K. within 7-9 business days.
Shipments are not trackable

Premium: Trackable delivery to most addresses in the U.K. within 3-4 business days!
Add one extra business day for deliveries to Northern Ireland and Scottish Highlands and islands

EU:

Premium: Trackable delivery to most EU destinations within 4-9 business days.

Australia:

Economy: Can deliver to P. O. Boxes and private residences.
Trackable service with delivery to addresses in Australia only.
Delivery time ranges from 7-9 business days for VIC and 8-10 business days for Interstate metro
Delivery time is up to 15 business days for remote areas of WA, NT & QLD.

Premium: Delivery to addresses in Australia only
Trackable delivery to most P. O. Boxes and private residences in Australia within 4-5 days based on the distance to a destination following dispatch.

India:

Premium: Delivery to most Indian addresses within 5-6 business days

Rest of the World:

Premium: Countries in the American continent: Trackable delivery to most countries within 4-7 business days

Asia:

Premium: Delivery to most Asian addresses within 5-9 business days

Disclaimer:
All orders received before 5 PM U.K time would start printing from the next business day. So the estimated delivery times start from the next day as well. Orders received after 5 PM U.K time (in our internal systems) on a business day or anytime on the weekend will begin printing the second to next business day. For example, an order placed at 11 AM today will begin printing tomorrow, whereas an order placed at 9 PM tonight will begin printing the day after tomorrow.


Unfortunately, due to several restrictions, we are unable to ship to the following countries:

  1. Afghanistan
  2. American Samoa
  3. Belarus
  4. Brunei Darussalam
  5. Central African Republic
  6. The Democratic Republic of Congo
  7. Eritrea
  8. Guinea-bissau
  9. Iran
  10. Lebanon
  11. Libiya Arab Jamahriya
  12. Somalia
  13. Sudan
  14. Russian Federation
  15. Syrian Arab Republic
  16. Ukraine
  17. Venezuela
What is custom duty/charge? Chevron down icon Chevron up icon

Customs duty are charges levied on goods when they cross international borders. It is a tax that is imposed on imported goods. These duties are charged by special authorities and bodies created by local governments and are meant to protect local industries, economies, and businesses.

Do I have to pay customs charges for the print book order? Chevron down icon Chevron up icon

The orders shipped to the countries that are listed under EU27 will not bear custom charges. They are paid by Packt as part of the order.

List of EU27 countries: www.gov.uk/eu-eea:

A custom duty or localized taxes may be applicable on the shipment and would be charged by the recipient country outside of the EU27 which should be paid by the customer and these duties are not included in the shipping charges been charged on the order.

How do I know my custom duty charges? Chevron down icon Chevron up icon

The amount of duty payable varies greatly depending on the imported goods, the country of origin and several other factors like the total invoice amount or dimensions like weight, and other such criteria applicable in your country.

For example:

  • If you live in Mexico, and the declared value of your ordered items is over $ 50, for you to receive a package, you will have to pay additional import tax of 19% which will be $ 9.50 to the courier service.
  • Whereas if you live in Turkey, and the declared value of your ordered items is over € 22, for you to receive a package, you will have to pay additional import tax of 18% which will be € 3.96 to the courier service.
How can I cancel my order? Chevron down icon Chevron up icon

Cancellation Policy for Published Printed Books:

You can cancel any order within 1 hour of placing the order. Simply contact customercare@packt.com with your order details or payment transaction id. If your order has already started the shipment process, we will do our best to stop it. However, if it is already on the way to you then when you receive it, you can contact us at customercare@packt.com using the returns and refund process.

Please understand that Packt Publishing cannot provide refunds or cancel any order except for the cases described in our Return Policy (i.e. Packt Publishing agrees to replace your printed book because it arrives damaged or material defect in book), Packt Publishing will not accept returns.

What is your returns and refunds policy? Chevron down icon Chevron up icon

Return Policy:

We want you to be happy with your purchase from Packtpub.com. We will not hassle you with returning print books to us. If the print book you receive from us is incorrect, damaged, doesn't work or is unacceptably late, please contact Customer Relations Team on customercare@packt.com with the order number and issue details as explained below:

  1. If you ordered (eBook, Video or Print Book) incorrectly or accidentally, please contact Customer Relations Team on customercare@packt.com within one hour of placing the order and we will replace/refund you the item cost.
  2. Sadly, if your eBook or Video file is faulty or a fault occurs during the eBook or Video being made available to you, i.e. during download then you should contact Customer Relations Team within 14 days of purchase on customercare@packt.com who will be able to resolve this issue for you.
  3. You will have a choice of replacement or refund of the problem items.(damaged, defective or incorrect)
  4. Once Customer Care Team confirms that you will be refunded, you should receive the refund within 10 to 12 working days.
  5. If you are only requesting a refund of one book from a multiple order, then we will refund you the appropriate single item.
  6. Where the items were shipped under a free shipping offer, there will be no shipping costs to refund.

On the off chance your printed book arrives damaged, with book material defect, contact our Customer Relation Team on customercare@packt.com within 14 days of receipt of the book with appropriate evidence of damage and we will work with you to secure a replacement copy, if necessary. Please note that each printed book you order from us is individually made by Packt's professional book-printing partner which is on a print-on-demand basis.

What tax is charged? Chevron down icon Chevron up icon

Currently, no tax is charged on the purchase of any print book (subject to change based on the laws and regulations). A localized VAT fee is charged only to our European and UK customers on eBooks, Video and subscriptions that they buy. GST is charged to Indian customers for eBooks and video purchases.

What payment methods can I use? Chevron down icon Chevron up icon

You can pay with the following card types:

  1. Visa Debit
  2. Visa Credit
  3. MasterCard
  4. PayPal
What is the delivery time and cost of print books? Chevron down icon Chevron up icon

Shipping Details

USA:

'

Economy: Delivery to most addresses in the US within 10-15 business days

Premium: Trackable Delivery to most addresses in the US within 3-8 business days

UK:

Economy: Delivery to most addresses in the U.K. within 7-9 business days.
Shipments are not trackable

Premium: Trackable delivery to most addresses in the U.K. within 3-4 business days!
Add one extra business day for deliveries to Northern Ireland and Scottish Highlands and islands

EU:

Premium: Trackable delivery to most EU destinations within 4-9 business days.

Australia:

Economy: Can deliver to P. O. Boxes and private residences.
Trackable service with delivery to addresses in Australia only.
Delivery time ranges from 7-9 business days for VIC and 8-10 business days for Interstate metro
Delivery time is up to 15 business days for remote areas of WA, NT & QLD.

Premium: Delivery to addresses in Australia only
Trackable delivery to most P. O. Boxes and private residences in Australia within 4-5 days based on the distance to a destination following dispatch.

India:

Premium: Delivery to most Indian addresses within 5-6 business days

Rest of the World:

Premium: Countries in the American continent: Trackable delivery to most countries within 4-7 business days

Asia:

Premium: Delivery to most Asian addresses within 5-9 business days

Disclaimer:
All orders received before 5 PM U.K time would start printing from the next business day. So the estimated delivery times start from the next day as well. Orders received after 5 PM U.K time (in our internal systems) on a business day or anytime on the weekend will begin printing the second to next business day. For example, an order placed at 11 AM today will begin printing tomorrow, whereas an order placed at 9 PM tonight will begin printing the day after tomorrow.


Unfortunately, due to several restrictions, we are unable to ship to the following countries:

  1. Afghanistan
  2. American Samoa
  3. Belarus
  4. Brunei Darussalam
  5. Central African Republic
  6. The Democratic Republic of Congo
  7. Eritrea
  8. Guinea-bissau
  9. Iran
  10. Lebanon
  11. Libiya Arab Jamahriya
  12. Somalia
  13. Sudan
  14. Russian Federation
  15. Syrian Arab Republic
  16. Ukraine
  17. Venezuela