Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Save more on your purchases! discount-offer-chevron-icon
Savings automatically calculated. No voucher code required.
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Newsletter Hub
Free Learning
Arrow right icon
timer SALE ENDS IN
0 Days
:
00 Hours
:
00 Minutes
:
00 Seconds
Arrow up icon
GO TO TOP
Machine Learning with Amazon SageMaker Cookbook

You're reading from   Machine Learning with Amazon SageMaker Cookbook 80 proven recipes for data scientists and developers to perform machine learning experiments and deployments

Arrow left icon
Product type Paperback
Published in Oct 2021
Publisher Packt
ISBN-13 9781800567030
Length 762 pages
Edition 1st Edition
Languages
Tools
Arrow right icon
Author (1):
Arrow left icon
Joshua Arvin Lat Joshua Arvin Lat
Author Profile Icon Joshua Arvin Lat
Joshua Arvin Lat
Arrow right icon
View More author details
Toc

Table of Contents (11) Chapters Close

Preface 1. Chapter 1: Getting Started with Machine Learning Using Amazon SageMaker 2. Chapter 2: Building and Using Your Own Algorithm Container Image FREE CHAPTER 3. Chapter 3: Using Machine Learning and Deep Learning Frameworks with Amazon SageMaker 4. Chapter 4: Preparing, Processing, and Analyzing the Data 5. Chapter 5: Effectively Managing Machine Learning Experiments 6. Chapter 6: Automated Machine Learning in Amazon SageMaker 7. Chapter 7: Working with SageMaker Feature Store, SageMaker Clarify, and SageMaker Model Monitor 8. Chapter 8: Solving NLP, Image Classification, and Time-Series Forecasting Problems with Built-in Algorithms 9. Chapter 9: Managing Machine Learning Workflows and Deployments 10. Other Books You May Enjoy

Preparing the entrypoint scikit-learn training script

Scikit-learn is a popular open source software library for machine learning. In this recipe, we will define a custom scikit-learn neural network model and prepare the entrypoint training script. In the next recipe, we will use the SKLearn estimator from the SageMaker Python SDK with this script as the entrypoint argument for training and deployment. If you are planning to migrate your custom scikit-learn neural network code and perform training and deployment with the SageMaker platform, then this recipe (and the next) is for you!

Getting ready

This recipe continues from Generating a synthetic dataset for deep learning experiments.

How to do it

The instructions in this recipe focus on preparing the entrypoint script. Let's start by creating an empty file named sklearn_script.py inside the Jupyter notebook instance and then proceed with the next set of steps:

  1. Navigate to the /ml-experients/chapter03/SKLearn...
lock icon The rest of the chapter is locked
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $19.99/month. Cancel anytime
Banner background image