Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Newsletter Hub
Free Learning
Arrow right icon
timer SALE ENDS IN
0 Days
:
00 Hours
:
00 Minutes
:
00 Seconds
Arrow up icon
GO TO TOP
Machine Learning for Developers

You're reading from   Machine Learning for Developers Uplift your regular applications with the power of statistics, analytics, and machine learning

Arrow left icon
Product type Paperback
Published in Oct 2017
Publisher Packt
ISBN-13 9781786469878
Length 270 pages
Edition 1st Edition
Languages
Arrow right icon
Authors (2):
Arrow left icon
Md Mahmudul Hasan Md Mahmudul Hasan
Author Profile Icon Md Mahmudul Hasan
Md Mahmudul Hasan
Rodolfo Bonnin Rodolfo Bonnin
Author Profile Icon Rodolfo Bonnin
Rodolfo Bonnin
Arrow right icon
View More author details
Toc

Table of Contents (10) Chapters Close

Preface 1. Introduction - Machine Learning and Statistical Science FREE CHAPTER 2. The Learning Process 3. Clustering 4. Linear and Logistic Regression 5. Neural Networks 6. Convolutional Neural Networks 7. Recurrent Neural Networks 8. Recent Models and Developments 9. Software Installation and Configuration

References

  • Hopfield, John J, Neural networks and physical systems with emergent collective computational abilities. Proceedings of the national academy of sciences 79.8 (1982): 2554-2558.
  • Bengio, Yoshua, Patrice Simard, and Paolo Frasconi, Learning long-term dependencies with gradient descent is difficult. IEEE transactions on neural networks 5.2 (1994): 157-166.
  • Hochreiter, Sepp, and Jürgen Schmidhuber, long short-term memory. Neural Computation 9.8 (1997): 1735-1780.
  • Hochreiter, Sepp. Recurrent neural net learning and vanishing gradient. International Journal Of Uncertainity, Fuzziness and Knowledge-Based Systems 6.2 (1998): 107-116.
  • Sutskever, Ilya, Training recurrent neural networks. University of Toronto, Toronto, Ont., Canada (2013).
  • Chung, Junyoung, et al, Empirical evaluation of gated recurrent neural networks on sequence modeling. arXiv preprint arXiv:1412.3555...
lock icon The rest of the chapter is locked
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $19.99/month. Cancel anytime