Search icon CANCEL
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Conferences
Free Learning
Arrow right icon
Arrow up icon
GO TO TOP
Machine Learning Engineering with Python

You're reading from   Machine Learning Engineering with Python Manage the production life cycle of machine learning models using MLOps with practical examples

Arrow left icon
Product type Paperback
Published in Nov 2021
Publisher Packt
ISBN-13 9781801079259
Length 276 pages
Edition 1st Edition
Languages
Tools
Arrow right icon
Author (1):
Arrow left icon
Andrew P. McMahon Andrew P. McMahon
Author Profile Icon Andrew P. McMahon
Andrew P. McMahon
Arrow right icon
View More author details
Toc

Table of Contents (13) Chapters Close

Preface 1. Section 1: What Is ML Engineering?
2. Chapter 1: Introduction to ML Engineering FREE CHAPTER 3. Chapter 2: The Machine Learning Development Process 4. Section 2: ML Development and Deployment
5. Chapter 3: From Model to Model Factory 6. Chapter 4: Packaging Up 7. Chapter 5: Deployment Patterns and Tools 8. Chapter 6: Scaling Up 9. Section 3: End-to-End Examples
10. Chapter 7: Building an Example ML Microservice 11. Chapter 8: Building an Extract Transform Machine Learning Use Case 12. Other Books You May Enjoy

Summary

In this chapter, we looked at how to take the ML solutions we have been building in the past few chapters and thought about how to scale them up to larger data volumes or higher numbers of requests for predictions. To do this, we mainly focused on Apache Spark as this is the most popular general-purpose engine for distributed computing. During our discussion of Apache Spark, we revisited some coding patterns and syntax we used previously in this book. By doing so, we developed a more thorough understanding of how and why to do certain things when developing in PySpark. We discussed the concept of UDFs in detail and how these can be used to create massively scalable ML workflows.

After this, we explored how to work with Spark on the cloud, specifically through the Elastic Map Reduce (EMR) service provided by AWS. Then, we looked at some of the other ways we can scale our solutions; that is, through serverless architectures and horizontal scaling with containers. In the former...

lock icon The rest of the chapter is locked
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at €18.99/month. Cancel anytime