In this chapter, we're going to introduce another approach to classification using a family of algorithms called Support Vector Machines (SVMs). They can work in both linear and non-linear scenarios, allowing high performance in many different contexts. Together with neural networks, SVMs probably represent the best choice for many tasks where it's not easy to find a good separating hyperplane. For example, for a long time, SVMs were the best choice for MNIST dataset classification, thanks to the fact that they can capture very high non-linear dynamics using a mathematical trick, without complex modifications to the algorithm. In the first part of this chapter, we're going to discuss the basics of linear SVM, which will then be used for their non-linear extensions. We'll also discuss some techniques to control the number of parameters...
United States
United Kingdom
India
Germany
France
Canada
Russia
Spain
Brazil
Australia
Argentina
Austria
Belgium
Bulgaria
Chile
Colombia
Cyprus
Czechia
Denmark
Ecuador
Egypt
Estonia
Finland
Greece
Hungary
Indonesia
Ireland
Italy
Japan
Latvia
Lithuania
Luxembourg
Malaysia
Malta
Mexico
Netherlands
New Zealand
Norway
Philippines
Poland
Portugal
Romania
Singapore
Slovakia
Slovenia
South Africa
South Korea
Sweden
Switzerland
Taiwan
Thailand
Turkey
Ukraine