All the functions we illustrated previously are created inside a DiscoGAN() class with the important parameter values declared in the __init__ function, as shown in the following code block that follows. The only two parameters that needs to be passed while training the network are the dataset_dir and the number of epochs for which the training needs to be run
def __init__(self,dataset_dir,epochs=200):
# Input shape
self.dataset_dir = dataset_dir
self.lambda_l2 = 1.0
self.image_size = 64
self.input_dim = 3
self.output_dim = 3
self.batch_size = 64
self.df = 64
self.gf = 64
self.channels = 3
self.output_c_dim = 3
self.l_r = 2e-4
self.beta1 = 0.5
self.beta2 = 0.99
self.weight_decay = 0.00001
self.epoch = epochs
self.train_size = 10000
...