Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Free Learning
Arrow right icon
Intelligent IoT Projects in 7 Days
Intelligent IoT Projects in 7 Days

Intelligent IoT Projects in 7 Days: Build exciting projects using smart devices

eBook
€8.99 €26.99
Paperback
€32.99
Subscription
Free Trial
Renews at €18.99p/m

What do you get with Print?

Product feature icon Instant access to your digital eBook copy whilst your Print order is Shipped
Product feature icon Paperback book shipped to your preferred address
Product feature icon Download this book in EPUB and PDF formats
Product feature icon Access this title in our online reader with advanced features
Product feature icon DRM FREE - Read whenever, wherever and however you want
OR
Modal Close icon
Payment Processing...
tick Completed

Shipping Address

Billing Address

Shipping Methods
Table of content icon View table of contents Preview book icon Preview Book

Intelligent IoT Projects in 7 Days

A Simple Smart Gardening System

Gardening is a nice activity. It needs care to keep a crop growing well. It is not possible to monitor and tend to a garden 24 hours a day, so we need a smart gardening system that can monitor and tend to the garden as we want it. This chapter will help you explore existing gardening systems and build your own simple smart gardening system.

In this chapter, we will cover the following topics:

  • Introducing smart gardening systems
  • Exploring gardening system platforms
  • Watering your garden and farm
  • Sensor devices for a smart gardening system
  • Watering your garden and farm
  • Building a smart gardening system

Let's get started!

Introducing smart gardening system

A gardening system is a system used to practice growing and cultivating plants as a part of horticulture. A gardening system is usually developed and implemented as a manual operation. An automated gardening system is designed to enable us to manage gardening, including monitoring moisture, temperature, and humidity.

In general, we can build a smart gardening system based on the high-level architecture that is shown in the following figure:

The following is a list of components to build a smart gardening system:

  • Sensors: Corresponding to your case, you need sensor devices to measure the garden's environment and condition. Capturing physical objects to digital form enables us to perform computing and processing.
  • MCU board with network module: The goal of MCU is to process all data that is acquired from sensors. Most MCU boards have limited computation, so we need to send sensor data to a server for further computation. To enable us to send data, the MCU board should be attached to a network module, either Ethernet or wireless.
  • Gateway: This is optional since some MCU boards can communicate with a server directly without modifying the protocol format. If a network module has the capability to deliver data over a primitive protocol, the functioning of gateway is necessary because a gateway can translate one protocol format to another protocol format.
  • Server: This is a center computation. Most servers have high-end hardware so heavy computation can be addressed.

This architecture is an ideal condition. In a real project, you may integrate an MCU board and server in one box. For instance, you can use a Raspberry Pi or BeagleBoard. These are a mini computers that you can deploy libraries to with respect to your case.

Exploring gardening system platforms

In this section, we will explore some gardening systems that could be used with our board, such as Arduino and Raspberry Pi. Some manufacturers provide kits that you can use directly in your project.

We will review three gardening system platforms that you may fit with your case.

Open Garden shield for Arduino

Open Garden shield for Arduino is manufactured by Cooking Hacks. This shield provides I/O connectors for gardening and farming sensors. It also includes an RF module with 433 MHz frequency. For further information about this shield, you can visit the official website at https://www.cooking-hacks.com/open-garden-shield-for-arduino. You can see this shield here:

Cooking Hacks provides a complete kit that you can use with Arduino directly. Currently, there are three kits. Each kit has unique features, including sensors and tools. The following is a list of Open Garden kits:

You can see a sample Open Garden kit for indoor use here:

Grove Smart Plant Care kit for Arduino

SeeedStudio has popular products called Grove. It makes it easier for you to connect your board to various sensor and actuator devices. Currently, SeeedStudio provides the Grove Smart Plant kit for Arduino. This kit consists of temperature, humidity, soil moisture, and illumination intensity sensors. To connect these sensors, the kit provides a Grove Base shield that you can attach to Arduino.

You can buy this kit on the official website, https://www.seeedstudio.com/Grove-Smart-Plant-Care-Kit-for-Arduino-p-2528.html. One type of Grove smart plant care kit for Arduino is shown here:

EcoDuino

EcoDuino is a gardening kit from DFRobot. This kit consists of an MCU board and sensors. The board also provides an RF module breakout in an XBee breakout model. It enables the board to communicate with other platforms. The kit comes with soil moisture, temperature, and humidity (DHT11) sensors. If you're interested in this kit, you can buy it from this website: https://www.dfrobot.com/product-641.html.

The EcoDuino kit is shown in the following image:

Sensor devices for a smart gardening system

To build a smart gardening system, we need some sensors related to gardening and farming. In this section, we will review the main sensors that are used in gardening and farming. Soil moisture, temperature, and humidity are three parameters that we can use to build our smart gardening system.

Let's explore!

Soil moisture sensor

One of the parameters of gardening is soil moisture. We should measure soil moisture to ensure our plant grows well. There are many options when it comes to soil moisture sensors. You can use the SparkFun Soil Moisture Sensor, for example. You can find this module at https://www.sparkfun.com/products/13322 .

You can see the SparkFun Soil Moisture Sensor in the following image:

You can use other soil moisture sensors from cheap manufacturers in China. You can order them from Alibaba or Aliexpress.

To read soil moisture values, we can use analog I/O. To use analog I/O, you should be familiar with the following Sketch APIs:

  • analogRead() is for reading analog data from an analog pin on Arduino
  • analogWrite() is for writing analog data to an analog pin on Arduino

For demonstration, we'll connect an Arduino board to the SparkFun Soil Moisture sensor. The following is the wiring used:

  • VCC is connected to 5V on the Arduino
  • GND is connected to GND on the Arduino
  • SIG is connected to A0 on the Arduino

A complete wiring can be seen in the following figure:

Now you can open the Arduino software. If you haven't installed it yet, you can download and install the tool from https://www.arduino.cc. Once done, you can write a Sketch program. Create this script:

void setup() { 
Serial.begin(9600);
}

void loop() {
int val;
val = analogRead(A0);

Serial.print("Soil moisture: ");
Serial.print(val);

delay(3000);
}

The program starts by initializing a Serial object with a baud rate of 9600. In a looping program, we read soil moisture levels using the analogRead() method. Then the measurement is printed to the serial port.

Save this Sketch file and upload the program to the Arduino board. To see the output data, you can use the serial monitor in the Arduino software. You can find it by going to Tools | Serial Monitor. You should see a soil moisture reading in the Serial Monitor tool.

Temperature and humidity sensor

Temperature and humidity have significant impact on the growth of the crop. Keeping temperature and humidity within certain values also keeps crops healthy. To monitor temperature and humidity, we can use the DHT22 or DHT11 for Arduino and Raspberry Pi. These sensors, DHT22 and DHT11, are famous sensors and have a lot of resources available for development.

The RHT03 (also known as DHT22) is a low-cost humidity and temperature sensor with a single-wire digital interface. You can obtain this module from SparkFun (https://www.sparkfun.com/products/10167) and Adafruit (https://www.adafruit.com/products/393). You may also find it in your local online or electronics store.

You can see the DHT22 module in the following figure:

For further information about the DHT22 module, you can read the DHT22 datasheet at http://cdn.sparkfun.com/datasheets/Sensors/Weather/RHT03.pdf.

Now we connect the DHT22 module to the Arduino. The following is the wiring:

  • VDD (pin 1) is connected to the 3.3V pin on the Arduino
  • SIG (pin 2) is connected to digital pin 8 on the Arduino
  • GND (pin 4) is connected to GND on the Arduino

You can see the complete wiring in the following figure:

To access the DHT-22 on the Arduino, we can use the DHT sensor library from Adafruit: https://github.com/adafruit/DHT-sensor-library. We can install this library from the Arduino software. Go to Sketch | Include Library | Manage Libraries and you will get a dialog.

Search for dht in Library Manager. You should see the DHT sensor library by Adafruit. Install this library:

Now let's start to write our Sketch program. You can develop a Sketch program to read temperature and humidity using DHT22. You can write this Sketch program in the Arduino software:

#include "DHT.h" 

// define DHT22
#define DHTTYPE DHT22
// define pin on DHT22
#define DHTPIN 8

DHT dht(DHTPIN, DHTTYPE);

void setup() {
Serial.begin(9600);
dht.begin();
}

void loop() {
delay(2000);

// Reading temperature or humidity takes about 250 milliseconds!
// Sensor readings may also be up to 2 seconds 'old' (its a very slow sensor)
float h = dht.readHumidity();
// Read temperature as Celsius (the default)
float t = dht.readTemperature();


// Check if any reads failed and exit early (to try again).
if (isnan(h) || isnan(t)) {
Serial.println("Failed to read from DHT sensor!");
return;
}

// Compute heat index in Celsius (isFahreheit = false)
float hic = dht.computeHeatIndex(t, h, false);

Serial.print("Humidity: ");
Serial.print(h);
Serial.print(" %\t");
Serial.print("Temperature: ");
Serial.print(t);
Serial.print(" *C\t");
Serial.print("Heat index: ");
Serial.print(hic);
Serial.println(" *C ");
}

Save the program. Now you can compile and upload it to the Arduino board. Furthermore, you can open Serial Monitor to see sensor data from the serial port. You can see a sample program output in the following screenshot:

How it works

In the setup() function, we initialize the DHT module by calling dht.begin(). To read temperature and humidity, you can use dht.readTemperature() and dht.readHumidity(). You also can get a heat index using the dht.computeHeatIndex() function.

Watering your garden and farm

One of the problems in gardening systems is how to water our garden or farm. There are pumps that fit boards such as the Arduino and Raspberry Pi. The 350GPH liquid pump (https://www.sparkfun.com/products/10455) could be used on your Arduino or Raspberry Pi:

You can also use a higher-voltage pump. To control it from the Arduino, you can use a relay that is connected between the Arduino and the pump. A relay can be connected to digital pins from Arduino. Using digitalRead() and digitalWrite() we can communicate with Relay from Arduino.

Building a smart gardening system

In this section, we will develop a smart gardening system. We will use a PID controller to manage all inputs from our sensors, which will be used in decision system. We'll measure soil moisture, temperature, and humidity as parameters for our system. To keep it simple for now, we'll only use one parameter, soil moisture level.

A high-level architecture can be seen in the following figure:

You can replace the MCU board and computer with a mini computer such as a Raspberry Pi. If you use a Raspberry Pi, you should remember that it does not have an analog input pin so you need an additional chip ADC, for instance the MCP3008, to work with analog input.

Assuming the watering system is connected via a relay, if we want to water the garden or farm, we just send digital value 1 to a relay. Some designs use a motor.

Let's build!

Introducing the PID controller

Proportional-integral-derivative (PID) control is the most common control algorithm used in the industry and has been universally accepted in industrial control. The basic idea behind a PID controller is to read a sensor and then compute the desired actuator output by calculating proportional, integral, and derivative responses and summing those three components to compute the output. The design of a general PID controller is as follows:

Furthermore, a PID controller formula can be defined as follows:

represents the coefficients for the proportional, integral, and derivative. These parameters are non-negative values. The variable represents the tracking error, the difference between the desired input value i and the actual output y. This error signal will be sent to the PID controller.

Implementing a PID controller in Python

In this section, we'll build a Python application to implement a PID controller. In general, our program flowchart can be described as follows:

We should not build a PID library from scratch. You can translate the PID controller formula into Python code easily. For implementation, I'm using the PID class from https://github.com/ivmech/ivPID. The following the PID.py file:

import time 

class PID:
"""PID Controller
"""

def __init__(self, P=0.2, I=0.0, D=0.0):

self.Kp = P
self.Ki = I
self.Kd = D

self.sample_time = 0.00
self.current_time = time.time()
self.last_time = self.current_time

self.clear()

def clear(self):
"""Clears PID computations and coefficients"""
self.SetPoint = 0.0

self.PTerm = 0.0
self.ITerm = 0.0
self.DTerm = 0.0
self.last_error = 0.0

# Windup Guard
self.int_error = 0.0
self.windup_guard = 20.0

self.output = 0.0

def update(self, feedback_value):
"""Calculates PID value for given reference feedback

.. math::
u(t) = K_p e(t) + K_i \int_{0}^{t} e(t)dt + K_d {de}/{dt}

.. figure:: images/pid_1.png
:align: center

Test PID with Kp=1.2, Ki=1, Kd=0.001 (test_pid.py)

""
error = self.SetPoint - feedback_value

self.current_time = time.time()
delta_time = self.current_time - self.last_time
delta_error = error - self.last_error

if (delta_time >= self.sample_time):
self.PTerm = self.Kp * error
self.ITerm += error * delta_time

if (self.ITerm < -self.windup_guard):
self.ITerm = -self.windup_guard
elif (self.ITerm > self.windup_guard):
self.ITerm = self.windup_guard

self.DTerm = 0.0
if delta_time > 0:
self.DTerm = delta_error / delta_time

# Remember last time and last error for next calculation
self.last_time = self.current_time
self.last_error = error

self.output = self.PTerm + (self.Ki * self.ITerm) + (self.Kd * self.DTerm)

def setKp(self, proportional_gain):
"""Determines how aggressively the PID reacts to the current error with setting Proportional Gain"""
self.Kp = proportional_gain

def setKi(self, integral_gain):
"""Determines how aggressively the PID reacts to the current error with setting Integral Gain"""
self.Ki = integral_gain

def setKd(self, derivative_gain):
"""Determines how aggressively the PID reacts to the current error with setting Derivative Gain"""
self.Kd = derivative_gain

def setWindup(self, windup):
"""Integral windup, also known as integrator windup or reset windup,
refers to the situation in a PID feedback controller where
a large change in setpoint occurs (say a positive change)
and the integral terms accumulates a significant error during the rise (windup), thus overshooting and continuing
to increase as this accumulated error is unwound
(offset by errors in the other direction).
The specific problem is the excess overshooting.
"""
self.windup_guard = windup

def setSampleTime(self, sample_time):
"""PID that should be updated at a regular interval.
Based on a pre-determined sample time, the PID decides if it should compute or return immediately.
"""
self.sample_time = sample_time

For testing, we'll create a simple program for simulation. We need libraries such as numpy, scipy, pandas, patsy, and matplotlib. Firstly, you should install python-dev for Python development. Type these commands on a Raspberry Pi terminal:

    $ sudo apt-get update
$ sudo apt-get install python-dev

Now you can install the numpy, scipy, pandas, and patsy libraries. Open a Raspberry Pi terminal and type these commands:

    $ sudo apt-get install python-scipy
$ pip install numpy scipy pandas patsy

The last step is to install the matplotlib library from the source code. Type these commands into the Raspberry Pi terminal:

    $ git clone https://github.com/matplotlib/matplotlib
$ cd matplotlib
$ python setup.py build
$ sudo python setup.py install

After the required libraries are installed, we can test our PID.py code. Create a script with the following contents:

import matplotlib 
matplotlib.use('Agg')

import PID
import time
import matplotlib.pyplot as plt
import numpy as np
from scipy.interpolate import spline


P = 1.4
I = 1
D = 0.001
pid = PID.PID(P, I, D)

pid.SetPoint = 0.0
pid.setSampleTime(0.01)

total_sampling = 100
feedback = 0

feedback_list = []
time_list = []
setpoint_list = []

print("simulating....")
for i in range(1, total_sampling):
pid.update(feedback)
output = pid.output
if pid.SetPoint > 0:
feedback += (output - (1 / i))

if 20 < i < 60:
pid.SetPoint = 1

if 60 <= i < 80:
pid.SetPoint = 0.5

if i >= 80:
pid.SetPoint = 1.3

time.sleep(0.02)

feedback_list.append(feedback)
setpoint_list.append(pid.SetPoint)
time_list.append(i)

time_sm = np.array(time_list)
time_smooth = np.linspace(time_sm.min(), time_sm.max(), 300)
feedback_smooth = spline(time_list, feedback_list, time_smooth)

fig1 = plt.gcf()
fig1.subplots_adjust(bottom=0.15)

plt.plot(time_smooth, feedback_smooth, color='red')
plt.plot(time_list, setpoint_list, color='blue')
plt.xlim((0, total_sampling))
plt.ylim((min(feedback_list) - 0.5, max(feedback_list) + 0.5))
plt.xlabel('time (s)')
plt.ylabel('PID (PV)')
plt.title('TEST PID')


plt.grid(True)
print("saving...")
fig1.savefig('result.png', dpi=100)

Save this program into a file called test_pid.py. Then run it:

    $ python test_pid.py  

This program will generate result.png as a result of the PID process. A sample output is shown in the following screenshot. You can see that the blue line has the desired values and the red line is the output of the PID:

How it works

First, we define our PID parameters:

P = 1.4 
I = 1
D = 0.001
pid = PID.PID(P, I, D)

pid.SetPoint = 0.0
pid.setSampleTime(0.01)

total_sampling = 100
feedback = 0

feedback_list = []
time_list = []
setpoint_list = []

After that, we compute the PID value during sampling. In this case, we set the desired output values as follows:

  • Output 1 for sampling from 20 to 60
  • Output 0.5 for sampling from 60 to 80
  • Output 1.3 for sampling more than 80
for i in range(1, total_sampling): 
pid.update(feedback)
output = pid.output
if pid.SetPoint > 0:
feedback += (output - (1 / i))

if 20 < i < 60:
pid.SetPoint = 1

if 60 <= i < 80:
pid.SetPoint = 0.5

if i >= 80:
pid.SetPoint = 1.3

time.sleep(0.02)

feedback_list.append(feedback)
setpoint_list.append(pid.SetPoint)
time_list.append(i)

The last step is to generate a report and save it into a file called result.png:

time_sm = np.array(time_list) 
time_smooth = np.linspace(time_sm.min(), time_sm.max(), 300)
feedback_smooth = spline(time_list, feedback_list, time_smooth)

fig1 = plt.gcf()
fig1.subplots_adjust(bottom=0.15)

plt.plot(time_smooth, feedback_smooth, color='red')
plt.plot(time_list, setpoint_list, color='blue')
plt.xlim((0, total_sampling))
plt.ylim((min(feedback_list) - 0.5, max(feedback_list) + 0.5))
plt.xlabel('time (s)')
plt.ylabel('PID (PV)')
plt.title('TEST PID')


plt.grid(True)
print("saving...")
fig1.savefig('result.png', dpi=100)

Sending data from the Arduino to the server

Not all Arduino boards have the capability to communicate with a server. Some Arduino models have built-in Wi-Fi that can connect and send data to a server, for instance, the Arduino Yun, Arduino MKR1000, and Arduino UNO Wi-Fi.

You can use the HTTP or MQTT protocols to communicate with the server. After the server receives the data, it will perform a computation to determine its decision.

Controlling soil moisture using a PID controller

Now we can change our PID controller simulation using a real application. We use soil moisture to decide whether to pump water. The output of the measurement is used as feedback input for the PID controller.

If the PID output is a positive value, then we turn on the watering system. Otherwise, we stop it. This may not be a good approach but is a good way to show how PID controllers work. Soil moisture data is obtained from the Arduino through a wireless network.

Let's write this program:

import matplotlib 
matplotlib.use('Agg')

import PID
import time
import matplotlib.pyplot as plt
import numpy as np
from scipy.interpolate import spline

P = 1.4
I = 1
D = 0.001
pid = PID.PID(P, I, D)

pid.SetPoint = 0.0
pid.setSampleTime(0.25) # a second

total_sampling = 100
sampling_i = 0
measurement = 0
feedback = 0

feedback_list = []
time_list = []
setpoint_list = []


def get_soil_moisture():
# reading from Arduino
# value 0 - 1023
return 200



print('PID controller is running..')
try:
while 1:
pid.update(feedback)
output = pid.output

soil_moisture = get_soil_moisture()
if soil_moisture is not None:

# # ## testing
# if 23 < sampling_i < 50:
# soil_moisture = 300

# if 65 <= sampling_i < 75:
# soil_moisture = 350

# if sampling_i >= 85:
# soil_moisture = 250
# # ################

if pid.SetPoint > 0:
feedback += soil_moisture + output

print('i={0} desired.soil_moisture={1:0.1f} soil_moisture={2:0.1f} pid.out={3:0.1f} feedback={4:0.1f}'
.format(sampling_i, pid.SetPoint, soil_moisture, output, feedback))
if output > 0:
print('turn on watering system')
elif output < 0:
print('turn off watering system')

if 20 < sampling_i < 60:
pid.SetPoint = 300 # soil_moisture

if 60 <= sampling_i < 80:
pid.SetPoint = 200 # soil_moisture

if sampling_i >= 80:
pid.SetPoint = 260 # soil_moisture



time.sleep(0.5)
sampling_i += 1

feedback_list.append(feedback)
setpoint_list.append(pid.SetPoint)
time_list.append(sampling_i)

if sampling_i >= total_sampling:
break

except KeyboardInterrupt:
print("exit")


print("pid controller done.")
print("generating a report...")
time_sm = np.array(time_list)
time_smooth = np.linspace(time_sm.min(), time_sm.max(), 300)
feedback_smooth = spline(time_list, feedback_list, time_smooth)

fig1 = plt.gcf()
fig1.subplots_adjust(bottom=0.15, left=0.1)

plt.plot(time_smooth, feedback_smooth, color='red')
plt.plot(time_list, setpoint_list, color='blue')
plt.xlim((0, total_sampling))
plt.ylim((min(feedback_list) - 0.5, max(feedback_list) + 0.5))
plt.xlabel('time (s)')
plt.ylabel('PID (PV)')
plt.title('Soil Moisture PID Controller')


plt.grid(True)
fig1.savefig('pid_soil_moisture.png', dpi=100)
print("finish")

Save this program to a file called ch01_pid.py and run it like this:

    $ sudo python ch01_pid.py  

After executing the program, you should obtain a file called pid_soil_moisture.png. A sample output can be seen in the following figure:

How it works

Generally speaking, this program combines two things: reading the current soil moisture value through a soil moisture sensor and implementing a PID controller. After measuring the soil moisture level, we send the value to the PID controller program. The output of the PID controller will cause a certain action. In this case, it will turn on the watering machine.

Summary

We reviewed several gardening system platforms. Then we explored two sensor devices commonly used in real projects. Lastly, we built a decision system to automate for watering garden using PID.

In the next chapter, we will explore a smart parking system and try to build a prototype.

Left arrow icon Right arrow icon
Download code icon Download Code

Key benefits

  • - Build intelligent and unusual IoT projects in just 7 days,
  • - Create home automation, smart home, and robotic projects and allow your devices to do smart work
  • - Build IoT skills through enticing projects and leverage revolutionary computing hardware through the RPi and Arduino.

Description

Intelligent IoT Projects in 7 days is about creating smart IoT projects in just 7 days. This book will help you to overcome the challenge of analyzing data from physical devices. This book aims to help you put together some of the most exciting IoT projects in a short span of time. You'll be able to use these in achieving or automating everyday tasks—one project per day. We will start with a simple smart gardening system and move on to a smart parking system, and then we will make our own vending machine, a smart digital advertising dashboard, a smart speaker machine, an autonomous fire fighter robot, and finally look at a multi-robot cooperation using swarm intelligence

Who is this book for?

If you're a developer, IoT enthusiast, or just someone curious about Internet of Things, then this book is for you. A basic understanding of electronic hardware, networking, and basic programming skills would do wonders.

What you will learn

  • - Learn how to get started with intelligent IoT projects
  • - Explore various pattern recognition and machine learning algorithms to make IoT projects smarter.
  • - Make decisions on which devices to use based on the kind of project to build.
  • - Create a simple machine learning application and implement decision system concepts
  • - Build a smart parking system using Arduino and Raspberry Pi
  • - Learn how to work with Amazon Echo and to build your own smart speaker machine
  • - Build multi-robot cooperation using swarm intelligence.
Estimated delivery fee Deliver to Czechia

Premium delivery 7 - 10 business days

€25.95
(Includes tracking information)

Product Details

Country selected
Publication date, Length, Edition, Language, ISBN-13
Publication date : Sep 11, 2017
Length: 206 pages
Edition : 1st
Language : English
ISBN-13 : 9781787286429
Category :
Tools :

What do you get with Print?

Product feature icon Instant access to your digital eBook copy whilst your Print order is Shipped
Product feature icon Paperback book shipped to your preferred address
Product feature icon Download this book in EPUB and PDF formats
Product feature icon Access this title in our online reader with advanced features
Product feature icon DRM FREE - Read whenever, wherever and however you want
OR
Modal Close icon
Payment Processing...
tick Completed

Shipping Address

Billing Address

Shipping Methods
Estimated delivery fee Deliver to Czechia

Premium delivery 7 - 10 business days

€25.95
(Includes tracking information)

Product Details

Publication date : Sep 11, 2017
Length: 206 pages
Edition : 1st
Language : English
ISBN-13 : 9781787286429
Category :
Tools :

Packt Subscriptions

See our plans and pricing
Modal Close icon
€18.99 billed monthly
Feature tick icon Unlimited access to Packt's library of 7,000+ practical books and videos
Feature tick icon Constantly refreshed with 50+ new titles a month
Feature tick icon Exclusive Early access to books as they're written
Feature tick icon Solve problems while you work with advanced search and reference features
Feature tick icon Offline reading on the mobile app
Feature tick icon Simple pricing, no contract
€189.99 billed annually
Feature tick icon Unlimited access to Packt's library of 7,000+ practical books and videos
Feature tick icon Constantly refreshed with 50+ new titles a month
Feature tick icon Exclusive Early access to books as they're written
Feature tick icon Solve problems while you work with advanced search and reference features
Feature tick icon Offline reading on the mobile app
Feature tick icon Choose a DRM-free eBook or Video every month to keep
Feature tick icon PLUS own as many other DRM-free eBooks or Videos as you like for just €5 each
Feature tick icon Exclusive print discounts
€264.99 billed in 18 months
Feature tick icon Unlimited access to Packt's library of 7,000+ practical books and videos
Feature tick icon Constantly refreshed with 50+ new titles a month
Feature tick icon Exclusive Early access to books as they're written
Feature tick icon Solve problems while you work with advanced search and reference features
Feature tick icon Offline reading on the mobile app
Feature tick icon Choose a DRM-free eBook or Video every month to keep
Feature tick icon PLUS own as many other DRM-free eBooks or Videos as you like for just €5 each
Feature tick icon Exclusive print discounts

Frequently bought together


Stars icon
Total 99.97
Intelligent IoT Projects in 7 Days
€32.99
IoT Projects with Bluetooth Low Energy
€29.99
Analytics for the Internet of Things (IoT)
€36.99
Total 99.97 Stars icon
Banner background image

Table of Contents

8 Chapters
A Simple Smart Gardening System Chevron down icon Chevron up icon
A Smart Parking System Chevron down icon Chevron up icon
Making Your Own Vending Machine Chevron down icon Chevron up icon
A Smart Digital Advertising Dashboard Chevron down icon Chevron up icon
A Smart Speaker Machine Chevron down icon Chevron up icon
Autonomous Firefighter Robot Chevron down icon Chevron up icon
Multi-Robot Cooperation Using Swarm Intelligence Chevron down icon Chevron up icon
Essential Hardware Components Chevron down icon Chevron up icon

Customer reviews

Rating distribution
Full star icon Full star icon Half star icon Empty star icon Empty star icon 2.5
(2 Ratings)
5 star 0%
4 star 50%
3 star 0%
2 star 0%
1 star 50%
idris Feb 16, 2018
Full star icon Full star icon Full star icon Full star icon Empty star icon 4
Nice book to start with
Amazon Verified review Amazon
Souvik Ganguli Jan 25, 2019
Full star icon Empty star icon Empty star icon Empty star icon Empty star icon 1
Don't buy....entire waste of money
Amazon Verified review Amazon
Get free access to Packt library with over 7500+ books and video courses for 7 days!
Start Free Trial

FAQs

What is the delivery time and cost of print book? Chevron down icon Chevron up icon

Shipping Details

USA:

'

Economy: Delivery to most addresses in the US within 10-15 business days

Premium: Trackable Delivery to most addresses in the US within 3-8 business days

UK:

Economy: Delivery to most addresses in the U.K. within 7-9 business days.
Shipments are not trackable

Premium: Trackable delivery to most addresses in the U.K. within 3-4 business days!
Add one extra business day for deliveries to Northern Ireland and Scottish Highlands and islands

EU:

Premium: Trackable delivery to most EU destinations within 4-9 business days.

Australia:

Economy: Can deliver to P. O. Boxes and private residences.
Trackable service with delivery to addresses in Australia only.
Delivery time ranges from 7-9 business days for VIC and 8-10 business days for Interstate metro
Delivery time is up to 15 business days for remote areas of WA, NT & QLD.

Premium: Delivery to addresses in Australia only
Trackable delivery to most P. O. Boxes and private residences in Australia within 4-5 days based on the distance to a destination following dispatch.

India:

Premium: Delivery to most Indian addresses within 5-6 business days

Rest of the World:

Premium: Countries in the American continent: Trackable delivery to most countries within 4-7 business days

Asia:

Premium: Delivery to most Asian addresses within 5-9 business days

Disclaimer:
All orders received before 5 PM U.K time would start printing from the next business day. So the estimated delivery times start from the next day as well. Orders received after 5 PM U.K time (in our internal systems) on a business day or anytime on the weekend will begin printing the second to next business day. For example, an order placed at 11 AM today will begin printing tomorrow, whereas an order placed at 9 PM tonight will begin printing the day after tomorrow.


Unfortunately, due to several restrictions, we are unable to ship to the following countries:

  1. Afghanistan
  2. American Samoa
  3. Belarus
  4. Brunei Darussalam
  5. Central African Republic
  6. The Democratic Republic of Congo
  7. Eritrea
  8. Guinea-bissau
  9. Iran
  10. Lebanon
  11. Libiya Arab Jamahriya
  12. Somalia
  13. Sudan
  14. Russian Federation
  15. Syrian Arab Republic
  16. Ukraine
  17. Venezuela
What is custom duty/charge? Chevron down icon Chevron up icon

Customs duty are charges levied on goods when they cross international borders. It is a tax that is imposed on imported goods. These duties are charged by special authorities and bodies created by local governments and are meant to protect local industries, economies, and businesses.

Do I have to pay customs charges for the print book order? Chevron down icon Chevron up icon

The orders shipped to the countries that are listed under EU27 will not bear custom charges. They are paid by Packt as part of the order.

List of EU27 countries: www.gov.uk/eu-eea:

A custom duty or localized taxes may be applicable on the shipment and would be charged by the recipient country outside of the EU27 which should be paid by the customer and these duties are not included in the shipping charges been charged on the order.

How do I know my custom duty charges? Chevron down icon Chevron up icon

The amount of duty payable varies greatly depending on the imported goods, the country of origin and several other factors like the total invoice amount or dimensions like weight, and other such criteria applicable in your country.

For example:

  • If you live in Mexico, and the declared value of your ordered items is over $ 50, for you to receive a package, you will have to pay additional import tax of 19% which will be $ 9.50 to the courier service.
  • Whereas if you live in Turkey, and the declared value of your ordered items is over € 22, for you to receive a package, you will have to pay additional import tax of 18% which will be € 3.96 to the courier service.
How can I cancel my order? Chevron down icon Chevron up icon

Cancellation Policy for Published Printed Books:

You can cancel any order within 1 hour of placing the order. Simply contact customercare@packt.com with your order details or payment transaction id. If your order has already started the shipment process, we will do our best to stop it. However, if it is already on the way to you then when you receive it, you can contact us at customercare@packt.com using the returns and refund process.

Please understand that Packt Publishing cannot provide refunds or cancel any order except for the cases described in our Return Policy (i.e. Packt Publishing agrees to replace your printed book because it arrives damaged or material defect in book), Packt Publishing will not accept returns.

What is your returns and refunds policy? Chevron down icon Chevron up icon

Return Policy:

We want you to be happy with your purchase from Packtpub.com. We will not hassle you with returning print books to us. If the print book you receive from us is incorrect, damaged, doesn't work or is unacceptably late, please contact Customer Relations Team on customercare@packt.com with the order number and issue details as explained below:

  1. If you ordered (eBook, Video or Print Book) incorrectly or accidentally, please contact Customer Relations Team on customercare@packt.com within one hour of placing the order and we will replace/refund you the item cost.
  2. Sadly, if your eBook or Video file is faulty or a fault occurs during the eBook or Video being made available to you, i.e. during download then you should contact Customer Relations Team within 14 days of purchase on customercare@packt.com who will be able to resolve this issue for you.
  3. You will have a choice of replacement or refund of the problem items.(damaged, defective or incorrect)
  4. Once Customer Care Team confirms that you will be refunded, you should receive the refund within 10 to 12 working days.
  5. If you are only requesting a refund of one book from a multiple order, then we will refund you the appropriate single item.
  6. Where the items were shipped under a free shipping offer, there will be no shipping costs to refund.

On the off chance your printed book arrives damaged, with book material defect, contact our Customer Relation Team on customercare@packt.com within 14 days of receipt of the book with appropriate evidence of damage and we will work with you to secure a replacement copy, if necessary. Please note that each printed book you order from us is individually made by Packt's professional book-printing partner which is on a print-on-demand basis.

What tax is charged? Chevron down icon Chevron up icon

Currently, no tax is charged on the purchase of any print book (subject to change based on the laws and regulations). A localized VAT fee is charged only to our European and UK customers on eBooks, Video and subscriptions that they buy. GST is charged to Indian customers for eBooks and video purchases.

What payment methods can I use? Chevron down icon Chevron up icon

You can pay with the following card types:

  1. Visa Debit
  2. Visa Credit
  3. MasterCard
  4. PayPal
What is the delivery time and cost of print books? Chevron down icon Chevron up icon

Shipping Details

USA:

'

Economy: Delivery to most addresses in the US within 10-15 business days

Premium: Trackable Delivery to most addresses in the US within 3-8 business days

UK:

Economy: Delivery to most addresses in the U.K. within 7-9 business days.
Shipments are not trackable

Premium: Trackable delivery to most addresses in the U.K. within 3-4 business days!
Add one extra business day for deliveries to Northern Ireland and Scottish Highlands and islands

EU:

Premium: Trackable delivery to most EU destinations within 4-9 business days.

Australia:

Economy: Can deliver to P. O. Boxes and private residences.
Trackable service with delivery to addresses in Australia only.
Delivery time ranges from 7-9 business days for VIC and 8-10 business days for Interstate metro
Delivery time is up to 15 business days for remote areas of WA, NT & QLD.

Premium: Delivery to addresses in Australia only
Trackable delivery to most P. O. Boxes and private residences in Australia within 4-5 days based on the distance to a destination following dispatch.

India:

Premium: Delivery to most Indian addresses within 5-6 business days

Rest of the World:

Premium: Countries in the American continent: Trackable delivery to most countries within 4-7 business days

Asia:

Premium: Delivery to most Asian addresses within 5-9 business days

Disclaimer:
All orders received before 5 PM U.K time would start printing from the next business day. So the estimated delivery times start from the next day as well. Orders received after 5 PM U.K time (in our internal systems) on a business day or anytime on the weekend will begin printing the second to next business day. For example, an order placed at 11 AM today will begin printing tomorrow, whereas an order placed at 9 PM tonight will begin printing the day after tomorrow.


Unfortunately, due to several restrictions, we are unable to ship to the following countries:

  1. Afghanistan
  2. American Samoa
  3. Belarus
  4. Brunei Darussalam
  5. Central African Republic
  6. The Democratic Republic of Congo
  7. Eritrea
  8. Guinea-bissau
  9. Iran
  10. Lebanon
  11. Libiya Arab Jamahriya
  12. Somalia
  13. Sudan
  14. Russian Federation
  15. Syrian Arab Republic
  16. Ukraine
  17. Venezuela