"We learn by example and by direct experience because there are real limits to the adequacy of verbal instruction."
–
It feels as if Malcolm Gladwell is explaining the K-nearest neighbors algorithm in the preceding quote; we only need to replace "verbal instruction" with "mathematical equation." In cases such as linear models, training data is used to learn a mathematical equation that models the data. Once a model is learned, we can easily put the training data aside. Here, in the nearest neighbors algorithm, the data itself is the model. Whenever we encounter a new data sample, we compare it to the training dataset. We locate the K-nearest samples in the training set to the newly encountered sample, and then we use the class labels of the K samples in the training set to assign a label to the new sample.
A few things should be noted here:
- The concept of training...