Search icon CANCEL
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Conferences
Free Learning
Arrow right icon
Arrow up icon
GO TO TOP
Deep Learning with Theano

You're reading from   Deep Learning with Theano Perform large-scale numerical and scientific computations efficiently

Arrow left icon
Product type Paperback
Published in Jul 2017
Publisher Packt
ISBN-13 9781786465825
Length 300 pages
Edition 1st Edition
Tools
Arrow right icon
Author (1):
Arrow left icon
Christopher Bourez Christopher Bourez
Author Profile Icon Christopher Bourez
Christopher Bourez
Arrow right icon
View More author details
Toc

Table of Contents (15) Chapters Close

Preface 1. Theano Basics FREE CHAPTER 2. Classifying Handwritten Digits with a Feedforward Network 3. Encoding Word into Vector 4. Generating Text with a Recurrent Neural Net 5. Analyzing Sentiment with a Bidirectional LSTM 6. Locating with Spatial Transformer Networks 7. Classifying Images with Residual Networks 8. Translating and Explaining with Encoding – decoding Networks 9. Selecting Relevant Inputs or Memories with the Mechanism of Attention 10. Predicting Times Sequences with Advanced RNN 11. Learning from the Environment with Reinforcement 12. Learning Features with Unsupervised Generative Networks 13. Extending Deep Learning with Theano Index

Training stability

Different methods are possible to improve stability during training. Online training, that is, training the model while playing the game, forgetting previous experiences, just considering the last one, is fundamentally unstable with deep neural networks: states that are close in time, such as the most recent states, are usually strongly similar or correlated, and taking the most recent states during training does not converge well.

To avoid such a failure, one possible solution has been to store the experiences in a replay memory or to use a database of human gameplays. Batching and shuffling random samples from the replay memory or the human gameplay database leads to more stable training, but off-policy training.

A second solution to improve stability is to fix the value of the parameter Training stability in the target evaluation Training stability for several thousands of updates of Training stability, reducing the correlations between the target and the Q-values:

Training stability

It is possible to train more efficiently with n-steps Q...

lock icon The rest of the chapter is locked
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at €18.99/month. Cancel anytime