Search icon CANCEL
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Conferences
Free Learning
Arrow right icon
Arrow up icon
GO TO TOP
Deep Learning for Time Series Cookbook

You're reading from   Deep Learning for Time Series Cookbook Use PyTorch and Python recipes for forecasting, classification, and anomaly detection

Arrow left icon
Product type Paperback
Published in Mar 2024
Publisher Packt
ISBN-13 9781805129233
Length 274 pages
Edition 1st Edition
Languages
Tools
Arrow right icon
Authors (2):
Arrow left icon
Luís Roque Luís Roque
Author Profile Icon Luís Roque
Luís Roque
Vitor Cerqueira Vitor Cerqueira
Author Profile Icon Vitor Cerqueira
Vitor Cerqueira
Arrow right icon
View More author details
Toc

Table of Contents (12) Chapters Close

Preface 1. Chapter 1: Getting Started with Time Series 2. Chapter 2: Getting Started with PyTorch FREE CHAPTER 3. Chapter 3: Univariate Time Series Forecasting 4. Chapter 4: Forecasting with PyTorch Lightning 5. Chapter 5: Global Forecasting Models 6. Chapter 6: Advanced Deep Learning Architectures for Time Series Forecasting 7. Chapter 7: Probabilistic Time Series Forecasting 8. Chapter 8: Deep Learning for Time Series Classification 9. Chapter 9: Deep Learning for Time Series Anomaly Detection 10. Index 11. Other Books You May Enjoy

Training a convolutional neural network

Convolutional neural networks (CNNs) are a class of neural networks particularly effective for tasks involving grid-like input data such as images, audio spectrograms, and even certain types of time series data.

Getting ready

The central idea of CNNs is to apply a convolution operation on the input data with convolutional filters (also known as kernels), which slide over the input data to produce output feature maps.

How to do it…

For simplicity, let’s define a single-layer 1D convolutional neural network, which is particularly suited for time series and sequence data. In PyTorch, we can use the nn.Conv1d layer for this:

class ConvNet(nn.Module):
    def __init__(self,
        input_size,
        hidden_size,
        output_size,
        ...
You have been reading a chapter from
Deep Learning for Time Series Cookbook
Published in: Mar 2024
Publisher: Packt
ISBN-13: 9781805129233
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at €18.99/month. Cancel anytime