Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Save more on your purchases! discount-offer-chevron-icon
Savings automatically calculated. No voucher code required.
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Newsletter Hub
Free Learning
Arrow right icon
timer SALE ENDS IN
0 Days
:
00 Hours
:
00 Minutes
:
00 Seconds
Arrow up icon
GO TO TOP
Database Design and Modeling with Google Cloud

You're reading from   Database Design and Modeling with Google Cloud Learn database design and development to take your data to applications, analytics, and AI

Arrow left icon
Product type Paperback
Published in Dec 2023
Publisher Packt
ISBN-13 9781804611456
Length 234 pages
Edition 1st Edition
Concepts
Arrow right icon
Author (1):
Arrow left icon
Abirami Sukumaran Abirami Sukumaran
Author Profile Icon Abirami Sukumaran
Abirami Sukumaran
Arrow right icon
View More author details
Toc

Table of Contents (18) Chapters Close

Preface 1. Part 1:Database Model: Business and Technical Design Considerations
2. Chapter 1: Data, Databases, and Design FREE CHAPTER 3. Chapter 2: Handling Data on the Cloud 4. Part 2:Structured Data
5. Chapter 3: Database Modeling for Structured Data 6. Chapter 4: Setting Up a Fully Managed RDBMS 7. Chapter 5: Designing an Analytical Data Warehouse 8. Part 3:Semi-Structured, Unstructured Data, and NoSQL Design
9. Chapter 6: Designing for Semi-Structured Data 10. Chapter 7: Unstructured Data Management 11. Part 4:DevOps and Databases
12. Chapter 8: DevOps and Databases 13. Part 5:Data to AI
14. Chapter 9: Data to AI – Modeling Your Databases for Analytics and ML 15. Chapter 10: Looking Ahead – Designing for LLM Applications 16. Index 17. Other Books You May Enjoy

Comparing real-world applications of LLMs and traditional analytics

To understand the applications of LLMs in the real world, let’s do a comparative study of the applications of LLMs with traditional analytics systems.

Here are some examples of traditional analytical applications:

  • Customer segmentation is the process of dividing customers into groups based on their shared characteristics. This can be done to target marketing campaigns or to develop new products and services.
  • Risk assessment is the process of identifying and assessing the potential risks to an organization. This can be done to develop mitigation strategies or to make informed decisions.
  • Fraud detection is the process of identifying and preventing fraudulent transactions. This is implemented to protect users and reduce financial losses.

Now, let’s discuss some real-world LLM-based applications:

  • Chatbots are computer programs that can simulate conversations with humans....
lock icon The rest of the chapter is locked
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $19.99/month. Cancel anytime
Banner background image