Transforming Data to Optimize for Analytics
In previous chapters, we covered how to architect a data pipeline and common ways of ingesting data into a data lake. We now turn to the process of transforming raw data in order to optimize the data for analytics, enabling an organization to efficiently gain new insights into their data.
Transforming data to optimize for analytics and create value for an organization is one of the key tasks for a data engineer, and there are many different types of transformations. Some transformations are common and can be generically applied to a dataset, such as converting raw files to Parquet format and partitioning the dataset. Other transformations use business logic in the transformations and vary based on the contents of the data and the specific business requirements.
In this chapter, we review some of the engines that are available in AWS for performing data transformations and also discuss some of the more common data transformations...