Search icon CANCEL
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Conferences
Free Learning
Arrow right icon
Arrow up icon
GO TO TOP
Data Analysis with R, Second Edition

You're reading from   Data Analysis with R, Second Edition A comprehensive guide to manipulating, analyzing, and visualizing data in R

Arrow left icon
Product type Paperback
Published in Mar 2018
Publisher Packt
ISBN-13 9781788393720
Length 570 pages
Edition 2nd Edition
Languages
Tools
Arrow right icon
Author (1):
Arrow left icon
Tony Fischetti Tony Fischetti
Author Profile Icon Tony Fischetti
Tony Fischetti
Arrow right icon
View More author details
Toc

Table of Contents (19) Chapters Close

Preface 1. RefresheR 2. The Shape of Data FREE CHAPTER 3. Describing Relationships 4. Probability 5. Using Data To Reason About The World 6. Testing Hypotheses 7. Bayesian Methods 8. The Bootstrap 9. Predicting Continuous Variables 10. Predicting Categorical Variables 11. Predicting Changes with Time 12. Sources of Data 13. Dealing with Missing Data 14. Dealing with Messy Data 15. Dealing with Large Data 16. Working with Popular R Packages 17. Reproducibility and Best Practices 18. Other Books You May Enjoy

Busting bootstrap myths


There are two very prevalent myths regarding the bootstrap that we will briefly address in this section.

The first is that the bootstrap is a panacea for small sample sizes. I think at least part of this myth is due to the name the bootstrap, which conjures of images of some rugged person pulling themselves up by the bootstraps and making something from nothing. Unfortunately, the bootstrap does not make something from nothing, nor does it even make more out of less. The important thing to remember is that the accuracy of your bootstrap distribution is completely dependent on the representativeness of your original sample. Refer back to Figure 8.1. Notice that, although the bootstrap distribution and the sampling distribution of sample means have the same shape, the bootstrap distribution was shifted slightly to the left because, by chance, the sample we got had a mean slightly less than the population mean. This will happen. And, of course, the smaller the sample...

lock icon The rest of the chapter is locked
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at €18.99/month. Cancel anytime