Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Save more on your purchases! discount-offer-chevron-icon
Savings automatically calculated. No voucher code required.
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Newsletter Hub
Free Learning
Arrow right icon
timer SALE ENDS IN
0 Days
:
00 Hours
:
00 Minutes
:
00 Seconds
Arrow up icon
GO TO TOP
Dancing with Qubits

You're reading from   Dancing with Qubits From qubits to algorithms, embark on the quantum computing journey shaping our future

Arrow left icon
Product type Paperback
Published in Mar 2024
Publisher Packt
ISBN-13 9781837636754
Length 684 pages
Edition 2nd Edition
Arrow right icon
Author (1):
Arrow left icon
Robert S. Sutor Robert S. Sutor
Author Profile Icon Robert S. Sutor
Robert S. Sutor
Arrow right icon
View More author details
Toc

Table of Contents (26) Chapters Close

Preface I Foundations
Why Quantum Computing FREE CHAPTER They’re Not Old, They’re Classics More Numbers Than You Can Imagine Planes and Circles and Spheres, Oh My Dimensions 6 What Do You Mean “Probably”? II Quantum Computing
One Qubit Two Qubits, Three Wiring Up the Circuits From Circuits to Algorithms Getting Physical III Advanced Topics
Considering NISQ Algorithms Introduction to Quantum Machine Learning Questions about the Future Afterword
A Quick Reference B Notices C Production Notes Other Books You May Enjoy
References
Index
Appendices

5.1 R2 and C1

In section 4.2, we looked at the real plane as a set of standard Cartesian coordinate pairs (x, y) with x and y in R representing points we can plot. We give these pairs an algebraic structure so that if u and v are in R2, then so is u + v. Also, if r is in R, we say that r is a scalar. r u and r v are in R2 as well. We carry out the addition coordinate by coordinate. The multiplication by r, called scalar multiplication, is also done that way. scalar R2 C1

If u = (u1, u2) and v = (v1, v2),

Displayed math

Using the origin O = (0, 0) as the identity element, R2 is a commutative group under addition. With scalar multiplication by elements of the field R, R2 is a two-dimensional vector space over R.

Rather than considering them as pairs or points, we now call u and v vectors. I use bold to indicate a variable or a “point” is a vector. When we plot a vector, we draw it as an arrow from the origin (0, 0) to the point represented...

lock icon The rest of the chapter is locked
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $19.99/month. Cancel anytime