Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Save more on your purchases! discount-offer-chevron-icon
Savings automatically calculated. No voucher code required.
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Newsletter Hub
Free Learning
Arrow right icon
Arrow up icon
GO TO TOP
Big Data Analytics

You're reading from   Big Data Analytics Real time analytics using Apache Spark and Hadoop

Arrow left icon
Product type Paperback
Published in Sep 2016
Publisher Packt
ISBN-13 9781785884696
Length 326 pages
Edition 1st Edition
Tools
Concepts
Arrow right icon
Author (1):
Arrow left icon
Venkat Ankam Venkat Ankam
Author Profile Icon Venkat Ankam
Venkat Ankam
Arrow right icon
View More author details
Toc

Table of Contents (12) Chapters Close

Preface 1. Big Data Analytics at a 10,000-Foot View FREE CHAPTER 2. Getting Started with Apache Hadoop and Apache Spark 3. Deep Dive into Apache Spark 4. Big Data Analytics with Spark SQL, DataFrames, and Datasets 5. Real-Time Analytics with Spark Streaming and Structured Streaming 6. Notebooks and Dataflows with Spark and Hadoop 7. Machine Learning with Spark and Hadoop 8. Building Recommendation Systems with Spark and Mahout 9. Graph Analytics with GraphX 10. Interactive Analytics with SparkR Index

Monitoring applications


Spark Streaming jobs produce useful information for understanding the current state of the application. Broadly, there are two ways to monitor Spark Streaming jobs: using the UI and using external tools.

The Spark UI HTTP address is http://driver-host-name:4040/. When multiple SparkContexts run at the same time, they are bound to successive ports like 4041, 4042, and so on. The Spark UI provides useful information like event timeline and DAG visualizations as explained in Chapter 3, Deep Dive into Apache Spark. When a Spark Streaming application is running, a streaming tab appears on the UI, which provides information such as the number of batches completed, number of records processed, batch window time, total time of Spark Streaming application, input rate, scheduling delay, processing time, and total delay. The UI also shows the Kafka topic name, partition numbers, and offsets processed in a batch when using the Kafka direct API. This is really helpful and easy...

lock icon The rest of the chapter is locked
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $19.99/month. Cancel anytime
Banner background image