Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Newsletter Hub
Free Learning
Arrow right icon
timer SALE ENDS IN
0 Days
:
00 Hours
:
00 Minutes
:
00 Seconds
Arrow up icon
GO TO TOP
TensorFlow Machine Learning Cookbook

You're reading from   TensorFlow Machine Learning Cookbook Over 60 practical recipes to help you master Google's TensorFlow machine learning library

Arrow left icon
Product type Paperback
Published in Feb 2017
Publisher Packt
ISBN-13 9781786462169
Length 370 pages
Edition 1st Edition
Languages
Arrow right icon
Author (1):
Arrow left icon
Nick McClure Nick McClure
Author Profile Icon Nick McClure
Nick McClure
Arrow right icon
View More author details
Toc

Table of Contents (13) Chapters Close

Preface 1. Getting Started with TensorFlow FREE CHAPTER 2. The TensorFlow Way 3. Linear Regression 4. Support Vector Machines 5. Nearest Neighbor Methods 6. Neural Networks 7. Natural Language Processing 8. Convolutional Neural Networks 9. Recurrent Neural Networks 10. Taking TensorFlow to Production 11. More with TensorFlow Index

Training a Siamese Similarity Measure

A great property of RNN models, as compared to many other models, is that they can deal with sequences of various lengths. Taking advantage of this fact and that they can generalize to sequences not seen before, we can create a way to measure how similar sequences of inputs are to each other. In this recipe, we will train a Siamese similarity RNN to measure the similarity between addresses for record matching.

Getting ready

In this recipe, we will build a bidirectional RNN model that feeds into a fully connected layer that outputs a fixed length numerical vector. We create a bidirectional RNN layer for both input addresses and feed the outputs into a fully connected layer that outputs a fixed length numerical vector (length 100). We then compare the two vector outputs with the cosine distance, which is bounded between -1 and 1. We denote input data to be similar with a target of 1, and different with a target of -1. The predictions of the cosine distance...

lock icon The rest of the chapter is locked
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $19.99/month. Cancel anytime