Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Newsletter Hub
Free Learning
Arrow right icon
timer SALE ENDS IN
0 Days
:
00 Hours
:
00 Minutes
:
00 Seconds
Arrow up icon
GO TO TOP
TensorFlow Machine Learning Cookbook

You're reading from   TensorFlow Machine Learning Cookbook Over 60 practical recipes to help you master Google's TensorFlow machine learning library

Arrow left icon
Product type Paperback
Published in Feb 2017
Publisher Packt
ISBN-13 9781786462169
Length 370 pages
Edition 1st Edition
Languages
Arrow right icon
Author (1):
Arrow left icon
Nick McClure Nick McClure
Author Profile Icon Nick McClure
Nick McClure
Arrow right icon
View More author details
Toc

Table of Contents (13) Chapters Close

Preface 1. Getting Started with TensorFlow FREE CHAPTER 2. The TensorFlow Way 3. Linear Regression 4. Support Vector Machines 5. Nearest Neighbor Methods 6. Neural Networks 7. Natural Language Processing 8. Convolutional Neural Networks 9. Recurrent Neural Networks 10. Taking TensorFlow to Production 11. More with TensorFlow Index

Implementing TF-IDF


Since we can choose the embedding for each word, we might decide to change the weighting on certain words. One such strategy is to upweight useful words and downweight overly common or too rare words. The embedding we will explore in this recipe is an attempt to achieve this.

Getting ready

TF-IDF is an acronym that stands for Text Frequency – Inverse Document Frequency. This term is essentially the product of text frequency and inverse document frequency for each word.

In the prior recipe, we introduced the bag of words methodology, which assigned a value of one for every occurrence of a word in a sentence. This is probably not ideal as each category of sentence (spam and ham for the prior recipe example) most likely has the same frequency of the, and, and other words, whereas words such as viagra and sale probably should have increased importance in figuring out whether or not the text is spam.

We first want to take into consideration the word frequency. Here we consider...

lock icon The rest of the chapter is locked
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $19.99/month. Cancel anytime