Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Save more on your purchases! discount-offer-chevron-icon
Savings automatically calculated. No voucher code required.
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Free Learning
Arrow right icon
Arrow up icon
GO TO TOP
TensorFlow Machine Learning Cookbook

You're reading from   TensorFlow Machine Learning Cookbook Over 60 practical recipes to help you master Google's TensorFlow machine learning library

Arrow left icon
Product type Paperback
Published in Feb 2017
Publisher Packt
ISBN-13 9781786462169
Length 370 pages
Edition 1st Edition
Languages
Arrow right icon
Author (1):
Arrow left icon
Nick McClure Nick McClure
Author Profile Icon Nick McClure
Nick McClure
Arrow right icon
View More author details
Toc

Table of Contents (13) Chapters Close

Preface 1. Getting Started with TensorFlow FREE CHAPTER 2. The TensorFlow Way 3. Linear Regression 4. Support Vector Machines 5. Nearest Neighbor Methods 6. Neural Networks 7. Natural Language Processing 8. Convolutional Neural Networks 9. Recurrent Neural Networks 10. Taking TensorFlow to Production 11. More with TensorFlow Index

Working with a Genetic Algorithm


TensorFlow can also be used to update any iterative algorithm that we can express in a computational graph. One such iterative algorithm is a genetic algorithm, an optimization procedure.

Getting ready

In this recipe, we will illustrate how to implement a simple genetic algorithm. Genetic algorithms are a way to optimize over any parameter space (discrete, continuous, smooth, non-smooth, and so on.). The idea is to create a population of randomly initialized solutions, and apply selection, recombination, and mutation to generate new (and potentially better) child solutions. The whole idea rests on the fact that we can calculate the 'fitness' of an individual solution by seeing how well that individual solves the problem.

Generally, the outline for a genetic algorithm is to start with a randomly initialized population, rank them in terms of their fitness, and select the top fit individuals to randomly recombine (or cross over) to create new child solutions....

lock icon The rest of the chapter is locked
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $19.99/month. Cancel anytime
Banner background image