Search icon CANCEL
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Conferences
Free Learning
Arrow right icon
Arrow up icon
GO TO TOP
Solutions Architect's Handbook

You're reading from   Solutions Architect's Handbook Kick-start your career with architecture design principles, strategies, and generative AI techniques

Arrow left icon
Product type Paperback
Published in Mar 2024
Publisher Packt
ISBN-13 9781835084236
Length 578 pages
Edition 3rd Edition
Languages
Tools
Arrow right icon
Authors (2):
Arrow left icon
Neelanjali Srivastav Neelanjali Srivastav
Author Profile Icon Neelanjali Srivastav
Neelanjali Srivastav
Saurabh Shrivastava Saurabh Shrivastava
Author Profile Icon Saurabh Shrivastava
Saurabh Shrivastava
Arrow right icon
View More author details
Toc

Table of Contents (20) Chapters Close

Preface 1. Solutions Architects in Organizations 2. Principles of Solution Architecture Design FREE CHAPTER 3. Cloud Migration and Cloud Architecture Design 4. Solution Architecture Design Patterns 5. Cloud-Native Architecture Design Patterns 6. Performance Considerations 7. Security Considerations 8. Architectural Reliability Considerations 9. Operational Excellence Considerations 10. Cost Considerations 11. DevOps and Solution Architecture Framework 12. Data Engineering for Solution Architecture 13. Machine Learning Architecture 14. Generative AI Architecture 15. Rearchitecting Legacy Systems 16. Solution Architecture Document 17. Learning Soft Skills to Become a Better Solutions Architect 18. Other Books You May Enjoy
19. Index

Machine learning in the cloud

ML development is a complex and costly process. There are barriers to adoption at each step of the ML workflow, from collecting and preparing data, which is time consuming and undifferentiated, to choosing the right ML algorithm, which is often done by trial and error, and lengthy training times, which leads to higher costs. Then there is model tuning, which can be a very long cycle and requires adjusting thousands of different combinations. Once you’ve deployed a model, you must monitor it and then scale and manage its production.

To solve these challenges, all major public cloud vendors provide an ML platform that facilitates ease of training, tuning, and deploying ML models anywhere at a low cost. For example, Amazon SageMaker is one of the most popular platforms that provides end-to-end ML services. SageMaker provides users with an integrated workbench of tools brought together in one place through SageMaker Studio. Users can launch Jupyter...

lock icon The rest of the chapter is locked
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at €18.99/month. Cancel anytime