Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Conferences
Free Learning
Arrow right icon
Arrow up icon
GO TO TOP
Scala for Machine Learning

You're reading from   Scala for Machine Learning Leverage Scala and Machine Learning to construct and study systems that can learn from data

Arrow left icon
Product type Paperback
Published in Dec 2014
Publisher
ISBN-13 9781783558742
Length 624 pages
Edition 1st Edition
Languages
Arrow right icon
Author (1):
Arrow left icon
Patrick R. Nicolas Patrick R. Nicolas
Author Profile Icon Patrick R. Nicolas
Patrick R. Nicolas
Arrow right icon
View More author details
Toc

Table of Contents (15) Chapters Close

Preface 1. Getting Started FREE CHAPTER 2. Hello World! 3. Data Preprocessing 4. Unsupervised Learning 5. Naïve Bayes Classifiers 6. Regression and Regularization 7. Sequential Data Models 8. Kernel Models and Support Vector Machines 9. Artificial Neural Networks 10. Genetic Algorithms 11. Reinforcement Learning 12. Scalable Frameworks A. Basic Concepts Index

Chapter 6. Regression and Regularization

In the first chapter, we briefly introduced the binary logistic regression (binomial logistic regression for a single variable) as our first test case. The purpose was to illustrate the concept of discriminative classification. There are many more regression models, starting with the ubiquitous ordinary least-square linear regression and the logistic regression [6:1].

The purpose of regression is to minimize a loss function, with the residual sum of squares (RSS) being one that is commonly used. The problem of overfitting described in the Overfitting section of Chapter 2, Hello World!, can be addressed by adding a penalty term to the loss function. The penalty term is an element of the larger concept of regularization.

The first section of this chapter will describe and implement the linear least-squares regression. The second section will introduce the concept of regularization with an implementation of the Ridge regression.

Finally, the...

lock icon The rest of the chapter is locked
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $19.99/month. Cancel anytime