Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Newsletter Hub
Free Learning
Arrow right icon
timer SALE ENDS IN
0 Days
:
00 Hours
:
00 Minutes
:
00 Seconds
R Machine Learning Projects
R Machine Learning Projects

R Machine Learning Projects: Implement supervised, unsupervised, and reinforcement learning techniques using R 3.5

Arrow left icon
Profile Icon Dr. Sunil Kumar Chinnamgari
Arrow right icon
€18.99 per month
Full star icon Empty star icon Empty star icon Empty star icon Empty star icon 1 (1 Ratings)
Paperback Jan 2019 334 pages 1st Edition
eBook
€17.99 €26.99
Paperback
€32.99
Subscription
Free Trial
Renews at €18.99p/m
Arrow left icon
Profile Icon Dr. Sunil Kumar Chinnamgari
Arrow right icon
€18.99 per month
Full star icon Empty star icon Empty star icon Empty star icon Empty star icon 1 (1 Ratings)
Paperback Jan 2019 334 pages 1st Edition
eBook
€17.99 €26.99
Paperback
€32.99
Subscription
Free Trial
Renews at €18.99p/m
eBook
€17.99 €26.99
Paperback
€32.99
Subscription
Free Trial
Renews at €18.99p/m

What do you get with a Packt Subscription?

Free for first 7 days. $19.99 p/m after that. Cancel any time!
Product feature icon Unlimited ad-free access to the largest independent learning library in tech. Access this title and thousands more!
Product feature icon 50+ new titles added per month, including many first-to-market concepts and exclusive early access to books as they are being written.
Product feature icon Innovative learning tools, including AI book assistants, code context explainers, and text-to-speech.
Product feature icon Thousands of reference materials covering every tech concept you need to stay up to date.
Subscribe now
View plans & pricing
Table of content icon View table of contents Preview book icon Preview Book

R Machine Learning Projects

Predicting Employee Attrition Using Ensemble Models

If you reviewed the recent machine learning competitions, one key observation I am sure you would make is that the recipes of all three winning entries in most of the competitions include very good feature engineering, along with well-tuned ensemble models. One conclusion I derive from this observation is that good feature engineering and building well-performing models are two areas that should be given equal emphasis in order to deliver successful machine learning solutions.

While feature engineering most times is something that is dependent on the creativity and domain expertise of the person building the model, building a well-performing model is something that can be achieved through a philosophy called ensembling. Machine learning practitioners often use ensembling techniques to beat the performance benchmarks yielded by...

Philosophy behind ensembling

Ensembling, which is super-famous among ML practitioners, can be well-understood through a simple real-world, non-ML example.

Assume that you have applied for a job in a very reputable corporate organization and you have been called for an interview. It is unlikely you will be selected for a job just based on one interview with an interviewer. In most cases, you will go through multiple rounds of interviews with several interviewers or with a panel of interviewers. The expectation from the organization is that each of the interviewers is an expert on a particular area and that the interviewer has evaluated your fitness for the job based on your experience in the interviewers' area of expertise. Your selection for the job, of course, depends on consolidated feedback from all of the interviewers that talked to you. The organization deems that you...

Getting started

To get started with this section, you will have to download the WA_Fn-UseC_-HR-Employee-Attrition.csv dataset from the GitHub link for the code in this chapter.

Understanding the attrition problem and the dataset

HR analytics helps with interpreting organizational data. It finds out the people-related trends in the data and helps the HR department take the appropriate steps to keep the organization running smoothly and profitably. Attrition in a corporate setup is one of the complex challenges that the people managers and HR personnel have to deal with. Interestingly, machine learning models can be deployed to predict potential attrition cases, thereby helping the appropriate HR personnel or people managers take the necessary steps to retain the employee.

In this chapter, we are going to build ML ensembles that will predict such potential cases of attrition. The job attrition dataset used for the project is a fictional dataset created by data scientists at IBM. The rsample library incorporates this dataset and we can make use of this...

K-nearest neighbors model for benchmarking the performance

In this section, we will implement the k-nearest neighbors (KNN) algorithm to build a model on our IBM attrition dataset. Of course, we are already aware from EDA that we have a class imbalance problem in the dataset at hand. However, we will not be treating the dataset for class imbalance for now as this is an entire area on its own and several techniques are available in this area and therefore out of scope for the ML ensembling topic covered in this chapter. We will, for now, consider the dataset as is and build ML models. Also, for class imbalance datasets, Kappa or precision and recall or the area under the curve of the receiver operating characteristic (AUROC) are the appropriate metrics to use. However, for simplicity, we will use accuracy as a performance metric. We will adapt 10-fold cross validation repeated...

Bagging

Bootstrap aggregation or bagging is the earliest ensemble technique adopted widely by the ML-practicing community. Bagging involves creating multiple different models from a single dataset. It is important to understand an important statistical technique called bootstrapping in order to get an understanding of bagging.

Bootstrapping involves multiple random subsets of a dataset being created. It is possible that the same data sample gets picked up in multiple subsets and this is termed as bootstrapping with replacement. The advantage with this approach is that the standard error in estimating a quantity that occurs due to the use of whole dataset. This technique can be better explained with an example.

Assume you have a small dataset of 1,000 samples. Based on the samples, you are asked to compute the average of the population that the sample represents. Now, a direct...

Randomization with random forests

As we've seen in bagging, we create a number of bags on which each model is trained. Each of the bags consists of subsets of the actual dataset, however the number of features or variables remain the same in each of the bags. In other words, what we performed in bagging is subsetting the dataset rows.

In random forests, while we create bags from the dataset through subsetting the rows, we also subset the features (columns) that need to be included in each of the bags.

Assume that you have 1,000 observations with 20 features in your dataset. We can create 20 bags where each one of the bags has 100 observations (this is possible because of bootstrapping with replacement) and five features. Now 20 models are trained where each model gets to see only the bag it is assigned with. The final prediction is arrived at by voting or averaging...

Boosting

A weak learner is an algorithm that performs relatively poorly—generally, the accuracy obtained with the weak learners is just above chance. It is often, if not always, observed that weak learners are computationally simple. Decision stumps or 1R algorithms are some examples of weak learners. Boosting converts weak learners into strong learners. This essentially means that boosting is not an algorithm that does the predictions, but it works with an underlying weak ML algorithm to get better performance.

A boosting model is a sequence of models learned on subsets of data similar to that of the bagging ensembling technique. The difference is in the creation of the subsets of data. Unlike bagging, all the subsets of data used for model training are not created prior to the start of the training. Rather, boosting builds a first model with an ML algorithm that...

Stacking

In all the ensembles we have learned about so far, we have manipulated the dataset in certain ways and exposed subsets of the data for model building. However, in stacking, we are not going to do anything with the dataset; instead we are going to apply a different technique that involves using multiple ML algorithms instead. In stacking, we build multiple models with various ML algorithms. Each algorithm possesses a unique way of learning the characteristics of data and the final stacked model indirectly incorporates all those unique ways of learning. Stacking gets the combined power of several ML algorithms through getting the final prediction by means of voting or averaging as we do in other types of ensembles.

Building attrition prediction model with stacking

...

Summary

To recollect, we were using a class-imbalanced dataset to build the attrition model. Using techniques to resolve the class imbalance prior to model building is another key aspect of getting better model performance measurements. We used bagging, randomization, boosting, and stacking to implement and predict the attrition model. We were able to accomplish 91% accuracy just by using the features that were readily available in the models. Feature engineering is a crucial aspect whose role cannot be ignored in ML models. This may be one other path to explore to improve model performance further.

In the next chapter, we will explore the secret recipe of recommending products or content through building a personalized recommendation engines. I am all set to implement a project to recommend jokes. Turn to the next chapter to continue the journey of learning.

...
Left arrow icon Right arrow icon
Download code icon Download Code

Key benefits

  • Master machine learning, deep learning, and predictive modeling concepts in R 3.5
  • Build intelligent end-to-end projects for finance, retail, social media, and a variety of domains
  • Implement smart cognitive models with helpful tips and best practices

Description

R is one of the most popular languages when it comes to performing computational statistics (statistical computing) easily and exploring the mathematical side of machine learning. With this book, you will leverage the R ecosystem to build efficient machine learning applications that carry out intelligent tasks within your organization. This book will help you test your knowledge and skills, guiding you on how to build easily through to complex machine learning projects. You will first learn how to build powerful machine learning models with ensembles to predict employee attrition. Next, you’ll implement a joke recommendation engine and learn how to perform sentiment analysis on Amazon reviews. You’ll also explore different clustering techniques to segment customers using wholesale data. In addition to this, the book will get you acquainted with credit card fraud detection using autoencoders, and reinforcement learning to make predictions and win on a casino slot machine. By the end of the book, you will be equipped to confidently perform complex tasks to build research and commercial projects for automated operations.

Who is this book for?

If you’re a data analyst, data scientist, or machine learning developer who wants to master machine learning concepts using R by building real-world projects, this is the book for you. Each project will help you test your skills in implementing machine learning algorithms and techniques. A basic understanding of machine learning and working knowledge of R programming is necessary to get the most out of this book.

What you will learn

  • Explore deep neural networks and various frameworks that can be used in R
  • Develop a joke recommendation engine to recommend jokes that match users' tastes
  • Create powerful ML models with ensembles to predict employee attrition
  • Build autoencoders for credit card fraud detection
  • Work with image recognition and convolutional neural networks
  • Make predictions for casino slot machine using reinforcement learning
  • Implement NLP techniques for sentiment analysis and customer segmentation

Product Details

Country selected
Publication date, Length, Edition, Language, ISBN-13
Publication date : Jan 14, 2019
Length: 334 pages
Edition : 1st
Language : English
ISBN-13 : 9781789807943
Vendor :
Google
Category :
Languages :
Tools :

What do you get with a Packt Subscription?

Free for first 7 days. $19.99 p/m after that. Cancel any time!
Product feature icon Unlimited ad-free access to the largest independent learning library in tech. Access this title and thousands more!
Product feature icon 50+ new titles added per month, including many first-to-market concepts and exclusive early access to books as they are being written.
Product feature icon Innovative learning tools, including AI book assistants, code context explainers, and text-to-speech.
Product feature icon Thousands of reference materials covering every tech concept you need to stay up to date.
Subscribe now
View plans & pricing

Product Details

Publication date : Jan 14, 2019
Length: 334 pages
Edition : 1st
Language : English
ISBN-13 : 9781789807943
Vendor :
Google
Category :
Languages :
Tools :

Packt Subscriptions

See our plans and pricing
Modal Close icon
€18.99 billed monthly
Feature tick icon Unlimited access to Packt's library of 7,000+ practical books and videos
Feature tick icon Constantly refreshed with 50+ new titles a month
Feature tick icon Exclusive Early access to books as they're written
Feature tick icon Solve problems while you work with advanced search and reference features
Feature tick icon Offline reading on the mobile app
Feature tick icon Simple pricing, no contract
€189.99 billed annually
Feature tick icon Unlimited access to Packt's library of 7,000+ practical books and videos
Feature tick icon Constantly refreshed with 50+ new titles a month
Feature tick icon Exclusive Early access to books as they're written
Feature tick icon Solve problems while you work with advanced search and reference features
Feature tick icon Offline reading on the mobile app
Feature tick icon Choose a DRM-free eBook or Video every month to keep
Feature tick icon PLUS own as many other DRM-free eBooks or Videos as you like for just €5 each
Feature tick icon Exclusive print discounts
€264.99 billed in 18 months
Feature tick icon Unlimited access to Packt's library of 7,000+ practical books and videos
Feature tick icon Constantly refreshed with 50+ new titles a month
Feature tick icon Exclusive Early access to books as they're written
Feature tick icon Solve problems while you work with advanced search and reference features
Feature tick icon Offline reading on the mobile app
Feature tick icon Choose a DRM-free eBook or Video every month to keep
Feature tick icon PLUS own as many other DRM-free eBooks or Videos as you like for just €5 each
Feature tick icon Exclusive print discounts

Frequently bought together


Stars icon
Total 98.97
R Machine Learning Projects
€32.99
Hands-On Data Science with R
€32.99
Mastering Machine Learning with R
€32.99
Total 98.97 Stars icon

Table of Contents

11 Chapters
Exploring the Machine Learning Landscape Chevron down icon Chevron up icon
Predicting Employee Attrition Using Ensemble Models Chevron down icon Chevron up icon
Implementing a Jokes Recommendation Engine Chevron down icon Chevron up icon
Sentiment Analysis of Amazon Reviews with NLP Chevron down icon Chevron up icon
Customer Segmentation Using Wholesale Data Chevron down icon Chevron up icon
Image Recognition Using Deep Neural Networks Chevron down icon Chevron up icon
Credit Card Fraud Detection Using Autoencoders Chevron down icon Chevron up icon
Automatic Prose Generation with Recurrent Neural Networks Chevron down icon Chevron up icon
Winning the Casino Slot Machines with Reinforcement Learning Chevron down icon Chevron up icon
The Road Ahead Chevron down icon Chevron up icon
Other Books You May Enjoy Chevron down icon Chevron up icon

Customer reviews

Rating distribution
Full star icon Empty star icon Empty star icon Empty star icon Empty star icon 1
(1 Ratings)
5 star 0%
4 star 0%
3 star 0%
2 star 0%
1 star 100%
naima Jun 08, 2021
Full star icon Empty star icon Empty star icon Empty star icon Empty star icon 1
Thanks for writing this book. Because there are not enough books on R. But lots of errors in the code. I wish the author would take immediate action.
Amazon Verified review Amazon
Get free access to Packt library with over 7500+ books and video courses for 7 days!
Start Free Trial

FAQs

What is included in a Packt subscription? Chevron down icon Chevron up icon

A subscription provides you with full access to view all Packt and licnesed content online, this includes exclusive access to Early Access titles. Depending on the tier chosen you can also earn credits and discounts to use for owning content

How can I cancel my subscription? Chevron down icon Chevron up icon

To cancel your subscription with us simply go to the account page - found in the top right of the page or at https://subscription.packtpub.com/my-account/subscription - From here you will see the ‘cancel subscription’ button in the grey box with your subscription information in.

What are credits? Chevron down icon Chevron up icon

Credits can be earned from reading 40 section of any title within the payment cycle - a month starting from the day of subscription payment. You also earn a Credit every month if you subscribe to our annual or 18 month plans. Credits can be used to buy books DRM free, the same way that you would pay for a book. Your credits can be found in the subscription homepage - subscription.packtpub.com - clicking on ‘the my’ library dropdown and selecting ‘credits’.

What happens if an Early Access Course is cancelled? Chevron down icon Chevron up icon

Projects are rarely cancelled, but sometimes it's unavoidable. If an Early Access course is cancelled or excessively delayed, you can exchange your purchase for another course. For further details, please contact us here.

Where can I send feedback about an Early Access title? Chevron down icon Chevron up icon

If you have any feedback about the product you're reading, or Early Access in general, then please fill out a contact form here and we'll make sure the feedback gets to the right team. 

Can I download the code files for Early Access titles? Chevron down icon Chevron up icon

We try to ensure that all books in Early Access have code available to use, download, and fork on GitHub. This helps us be more agile in the development of the book, and helps keep the often changing code base of new versions and new technologies as up to date as possible. Unfortunately, however, there will be rare cases when it is not possible for us to have downloadable code samples available until publication.

When we publish the book, the code files will also be available to download from the Packt website.

How accurate is the publication date? Chevron down icon Chevron up icon

The publication date is as accurate as we can be at any point in the project. Unfortunately, delays can happen. Often those delays are out of our control, such as changes to the technology code base or delays in the tech release. We do our best to give you an accurate estimate of the publication date at any given time, and as more chapters are delivered, the more accurate the delivery date will become.

How will I know when new chapters are ready? Chevron down icon Chevron up icon

We'll let you know every time there has been an update to a course that you've bought in Early Access. You'll get an email to let you know there has been a new chapter, or a change to a previous chapter. The new chapters are automatically added to your account, so you can also check back there any time you're ready and download or read them online.

I am a Packt subscriber, do I get Early Access? Chevron down icon Chevron up icon

Yes, all Early Access content is fully available through your subscription. You will need to have a paid for or active trial subscription in order to access all titles.

How is Early Access delivered? Chevron down icon Chevron up icon

Early Access is currently only available as a PDF or through our online reader. As we make changes or add new chapters, the files in your Packt account will be updated so you can download them again or view them online immediately.

How do I buy Early Access content? Chevron down icon Chevron up icon

Early Access is a way of us getting our content to you quicker, but the method of buying the Early Access course is still the same. Just find the course you want to buy, go through the check-out steps, and you’ll get a confirmation email from us with information and a link to the relevant Early Access courses.

What is Early Access? Chevron down icon Chevron up icon

Keeping up to date with the latest technology is difficult; new versions, new frameworks, new techniques. This feature gives you a head-start to our content, as it's being created. With Early Access you'll receive each chapter as it's written, and get regular updates throughout the product's development, as well as the final course as soon as it's ready.We created Early Access as a means of giving you the information you need, as soon as it's available. As we go through the process of developing a course, 99% of it can be ready but we can't publish until that last 1% falls in to place. Early Access helps to unlock the potential of our content early, to help you start your learning when you need it most. You not only get access to every chapter as it's delivered, edited, and updated, but you'll also get the finalized, DRM-free product to download in any format you want when it's published. As a member of Packt, you'll also be eligible for our exclusive offers, including a free course every day, and discounts on new and popular titles.