Putting everything together – implementing a CNN
So far, you have learned about the basic building blocks of CNNs. The concepts illustrated in this chapter are not really more difficult than traditional multilayer NNs. We can say that the most important operation in a traditional NN is matrix multiplication. For instance, we use matrix multiplications to compute the pre-activations (or net inputs), as in z = Wx + b. Here, x is a column vector ( matrix) representing pixels, and W is the weight matrix connecting the pixel inputs to each hidden unit.
In a CNN, this operation is replaced by a convolution operation, as in , where X is a matrix representing the pixels in a arrangement. In both cases, the pre-activations are passed to an activation function to obtain the activation of a hidden unit, , where is the activation function. Furthermore, you will recall that subsampling is another building block of a CNN, which may appear in the form of pooling, as was described in the...