Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Newsletter Hub
Free Learning
Arrow right icon
timer SALE ENDS IN
0 Days
:
00 Hours
:
00 Minutes
:
00 Seconds
Arrow up icon
GO TO TOP
OpenCV Computer Vision Application Programming Cookbook Second Edition

You're reading from   OpenCV Computer Vision Application Programming Cookbook Second Edition Over 50 recipes to help you build computer vision applications in C++ using the OpenCV library

Arrow left icon
Product type Paperback
Published in Aug 2014
Publisher Packt
ISBN-13 9781782161486
Length 374 pages
Edition 1st Edition
Languages
Tools
Arrow right icon
Author (1):
Arrow left icon
Robert Laganiere Robert Laganiere
Author Profile Icon Robert Laganiere
Robert Laganiere
Arrow right icon
View More author details
Toc

Table of Contents (13) Chapters Close

Preface 1. Playing with Images FREE CHAPTER 2. Manipulating Pixels 3. Processing Color Images with Classes 4. Counting the Pixels with Histograms 5. Transforming Images with Morphological Operations 6. Filtering the Images 7. Extracting Lines, Contours, and Components 8. Detecting Interest Points 9. Describing and Matching Interest Points 10. Estimating Projective Relations in Images 11. Processing Video Sequences Index

Introduction

In order to build computer vision applications, you need to be able to access the image content and eventually modify or create images. This chapter will teach you how to manipulate the picture elements (also known as pixels). You will learn how to scan an image and process each of its pixels. You will also learn how to do this efficiently, since even images of modest dimensions can contain hundreds of thousands of pixels.

Fundamentally, an image is a matrix of numerical values. This is why, as we learned in Chapter 1, Playing with Images, OpenCV 2 manipulates them using the cv::Mat data structure. Each element of the matrix represents one pixel. For a gray-level image (a black-and-white image), pixels are unsigned 8-bit values where 0 corresponds to black and 255 corresponds to white. In the case of color images, three primary color values are required in order to reproduce the different visible colors. This is a consequence of the fact that our human visual system is trichromatic...

lock icon The rest of the chapter is locked
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $19.99/month. Cancel anytime