In data science application development, such as credit card fraud detection, airline delay prediction, sentiment analysis from a huge corpus of text, and so on, we are required to store, process, and analyze a dataset that might not fit into computer memory. Moreover, in some situations, the dataset might not be that big but the complexity of the algorithm forces us to use huge memory. In these types of situations where the dataset is way too big, or the algorithm is too complex, you are required to use parallel processing to achieve the task. In R, the data frame is the most convenient and popular structure to store, process, and analyze a dataset, but for a larger data context, the data frame is not fast enough. The external data frame (XDF) is an alternative to the typical R data frame used to store, process, and analyze larger data. In this chapter...
United States
United Kingdom
India
Germany
France
Canada
Russia
Spain
Brazil
Australia
Argentina
Austria
Belgium
Bulgaria
Chile
Colombia
Cyprus
Czechia
Denmark
Ecuador
Egypt
Estonia
Finland
Greece
Hungary
Indonesia
Ireland
Italy
Japan
Latvia
Lithuania
Luxembourg
Malaysia
Malta
Mexico
Netherlands
New Zealand
Norway
Philippines
Poland
Portugal
Romania
Singapore
Slovakia
Slovenia
South Africa
South Korea
Sweden
Switzerland
Taiwan
Thailand
Turkey
Ukraine