Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Free Learning
Arrow right icon
Arrow up icon
GO TO TOP
Mastering Julia

You're reading from   Mastering Julia Enhance your analytical and programming skills for data modeling and processing with Julia

Arrow left icon
Product type Paperback
Published in Jan 2024
Publisher Packt
ISBN-13 9781805129790
Length 506 pages
Edition 2nd Edition
Languages
Arrow right icon
Author (1):
Arrow left icon
Malcolm Sherrington Malcolm Sherrington
Author Profile Icon Malcolm Sherrington
Malcolm Sherrington
Arrow right icon
View More author details
Toc

Table of Contents (14) Chapters Close

Preface 1. Chapter 1: The Julia Environment 2. Chapter 2: Developing in Julia FREE CHAPTER 3. Chapter 3: The Julia Type System 4. Chapter 4: The Three Ms 5. Chapter 5: Interoperability 6. Chapter 6: Working with Data 7. Chapter 7: Scientific Programming 8. Chapter 8: Visualization 9. Chapter 9: Database Access 10. Chapter 10: Networks and Multitasking 11. Chapter 11: Julia’s Back Pages 12. Index 13. Other Books You May Enjoy

Multi-dimensional arrays

In fact, Julia views all arrays as a single stream of values and applies size and reshape parameters to compute the appropriate indexing.

Arrays with the number of dimensions greater than 2 (that is, array > 2) can be defined in a straightforward method:

julia> A = rand(4,4,4)
4x4x4 Array{Float64,3}:
[:, :, 1] =
0.522564 0.852847 0.452363 0.444234
0.992522 0.450827 0.885484 0.0693068
0.378972 0.365945 0.757072 0.807745
0.383636 0.383711 0.304271 0.389717
[:, :, 2] =
0.570806 0.912306 0.358262 0.494621
0.810382 0.235757 0.926146 0.915814
0.634989 0.196174 0.773742 0.158593
0.700649 0.843975 0.321075 0.306428
[:, :, 3] =
0.638391 0.606747 0.15706 0.241825
0.492206 0.798426 0.86354 0.715799
0.971428 0.200663 0.00568161 0.0868379
0.936388 0.183021 0.0476718 0.917008
[:, :, 4] =
0.252962 0.432026 0.817504 0.274034
0.164883 0.209135 0.925754 0.876917
0.125772 0.998318 0.593097 0.614772
0.865795 0.204839 0.315774 0.520044

Note the use of slice ':' notation to display the 3D matrix; values are ordered by the third index, then the second, and finally the first.

It is possible to convert this 3D array into a standard matrix containing the same number of values, as follows:

julia> B = reshape(A,8,8)
8x8 Array{Float64,2}:
0.522564 0.452363 0.570806 ... 0.15706 0.252962 0.817504
0.992522 0.885484 0.810382 ... 0.86354 0.164883 0.925754
0.378972 0.757072 0.634989 ... 0.005681 0.125772 0.593097
0.383636 0.304271 0.700649 ... 0.0476718 0.865795 0.31577
0.852847 0.444234 0.912306 ... 0.241825 0.432026 0.274034
0.450827 0.0693068 0.235757 ... 0.715799 0.209135 0.876917
0.365945 0.807745 0.196174 ... 0.086838 0.998318 0.614772
0.383711 0.389717 0.843975 ... 0.917008 0.204839 0.520044

Or, it could appear as a simple vector, like this:

julia> C = reshape(A,64); typeof(C); # => Array{Float64,1}
julia> transpose(C)
1x64 LinearAlgebra.Transpose{Float64,Array{Float64,1}}:
0.522564 0.992522 0.378972 0.383636 ... 0.876917 0.614772 0.520044

Sparse matrices

Normal matrices are sometimes referred to as “dense,” which means that there is an entry for cell [i,j]. In cases where most cell values are, say, 0, this is inefficient, and it is better to implement a scheme of tuples (i,j,x), where x is the value referenced by i and J.

These are termed sparse matrices, and we can create a sparse matrix by executing the following code:

using SparseArrays
S1 = SparseArrays.sparse(I, J, X[, m, n, combine])

S1 will have dimensions m by n and S[I[k], J[k]] = X[k].

If m and n are not given, they default to max(I) and max(J) respectively. The combine() function is used to combine duplicates, and if not provided, duplicates are added by default.

Sparse matrices support much of the same set of operations as dense matrices, but there are a few special functions that can be applied. For example, spzeros() is a counterpart of zeros(), and random number arrays can be generated by sprand() and sprandn():

# The 0.3 means only 30% for the numbers generated will be non-zero
# This will produce different arrays each time it is run
julia> A = sprand(5,5,0.3)
  ⋅        ⋅         ⋅         ⋅        0.16395
 0.21055   ⋅        0.544431   ⋅         ⋅
  ⋅        ⋅         ⋅         ⋅         ⋅
 0.76612   ⋅         ⋅        0.785714  0.993288
  ⋅       0.740757  0.209118   ⋅         ⋅
# So squaring the matrix produces another sparse matrix
julia> A * A
5×5 SparseMatrixCSC{Float64,Int64} with 10 stored entries:
  ⋅        0.121447  0.034285   ⋅         ⋅
  ⋅         ⋅         ⋅         ⋅        0.0345197
  ⋅         ⋅         ⋅         ⋅         ⋅
 0.601951  0.735785  0.207715  0.617346  0.906046
 0.155966   ⋅        0.403291   ⋅         ⋅

Using Matrix() converts the sparse matrix to a dense one, as follows:

julia> convert(Matrix,A);
5×5 Matrix{Float64}:
 0.0      0.0       0.0       0.0       0.16395
 0.21055  0.0       0.544431  0.0       0.0
 0.0      0.0       0.0       0.0       0.0
 0.76612  0.0       0.0       0.785714  0.993288
 0.0      0.740757  0.209118  0.0       0.0

Sparse vectors

Alternatively, we can convert a vector into a sparse array using the sparsevec() function:

julia> sparsevec([1 7 0 3 0])
5-element SparseVector{Int64, Int64} with 3 stored entries:
  [1]  =  1
  [2]  =  2
  [4]  =  4

Another method of construction can make use of a dictionary, as follows:

julia> sparsevec(Dict(1 => "Malcolm", 3 => "malcolm@myemail.org"))
3-element SparseVector{String, Int64} with 2 stored entries:
  [1]  =  "Malcolm"
  [3]  =  "malcolm@myemail.org"
julia> sparsevec(Dict("name" => "Malcolm", "email" => "malcolm@
myemail.org"))
ERROR: MethodError: no method matching sparsevec(::Dict{String, 
String})

Note: The key must be an integer; otherwise, an error is raised.

Sparse diagonal matrices

The eyes() function to produce an identity matrix has been deprecated.

Instead, we can use spdiagm() to create a sparse diagonal matrix, and then convert() is required to convert it to a real matrix:

julia> A = spdiagm(ones(Int64,3)) # or spdiagm([1,1,1])
3×3 SparseMatrixCSC{Int64, Int64} with 3 stored entries:
 1   ⋅    ⋅
 ⋅   1   ⋅
 ⋅   ⋅   1
julia> convert(Matrix{Float64},A)
3×3 Matrix{Float64}:
 1.0  0.0  0.0
 0.0  1.0  0.0
 0.0  0.0  1.0

Arrays consist of a collection of homogeneous elements. Later, in Chapters 6 and 7, we will examine more sophisticated structures where the columns can be addressed by name.

These are termed DataFrames and can be thought of as equivalent to data held in a spreadsheet, but we will briefly introduce them here.

You have been reading a chapter from
Mastering Julia - Second Edition
Published in: Jan 2024
Publisher: Packt
ISBN-13: 9781805129790
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $19.99/month. Cancel anytime
Banner background image