Search icon CANCEL
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Conferences
Free Learning
Arrow right icon
Managing Data Science
Managing Data Science

Managing Data Science: Effective strategies to manage data science projects and build a sustainable team

eBook
€13.98 €19.99
Paperback
€24.99
Subscription
Free Trial
Renews at €18.99p/m

What do you get with a Packt Subscription?

Free for first 7 days. $19.99 p/m after that. Cancel any time!
Product feature icon Unlimited ad-free access to the largest independent learning library in tech. Access this title and thousands more!
Product feature icon 50+ new titles added per month, including many first-to-market concepts and exclusive early access to books as they are being written.
Product feature icon Innovative learning tools, including AI book assistants, code context explainers, and text-to-speech.
Product feature icon Thousands of reference materials covering every tech concept you need to stay up to date.
Subscribe now
View plans & pricing
Table of content icon View table of contents Preview book icon Preview Book

Managing Data Science

What You Can Do with Data Science

I once told a friend who works as a software developer about one of the largest European data science conferences. He showed genuine interest and asked whether we could go together. Sure, I said. Let's broaden our knowledge together. It will be great to talk to you about machine learning. Several days later, we were sitting in the middle of a large conference hall. The first speaker had come on stage and told us about some technical tricks he used to win several data science competitions. When the next speaker talked about tensor algebra, I noticed a depleted look in the eyes of my friend.

What's up? I asked.

I'm just wondering when they'll show us the robots.

To avoid having incorrect expectations, we need to inform ourselves. Before building a house, you'd better know how a hammer works. Having basic...

Defining AI

Media and news use AI as a substitute buzzword for any technology related to data analysis. In fact, AI is a sub-field of computer science and mathematics. It all started in the 1950s, when several researchers started asking whether computers can learn, think, and reason. 70 years later, we still do not know the answer. However, we have made significant progress in a specific kind of AI that solves thoroughly specified narrow tasks: weak AI.

Science fiction novels tell about machines that can reason and think like humans. In scientific language, they are described as strong AI. Strong AI can think like a human, and its intellectual abilities may be much more advanced. The creation of strong AI remains the main long-term dream of the scientific community. However, practical applications are all about weak AI. While strong AI tries to solve the problem of general intelligence...

Introduction to machine learning

Machine learning is by far the most important tool of a data scientist. It allows us to create algorithms that discover patterns in data with thousands of variables. We will now explore different types and capabilities of machine learning algorithms.

Machine learning is a scientific field that studies algorithms that can learn to perform tasks without specific instructions, relying on patterns discovered in data. For example, we can use algorithms to predict the likelihood of having a disease or assess the risk of failure in complex manufacturing equipment. Every machine learning algorithm follows a simple formula. In the following diagram, you can see a high-level decision process that is based on a machine learning algorithm. Each machine learning model consumes data to produce information that can support human decisions or fully automate them...

Introduction to deep learning

Before writing this section, I was thinking about the many ways we can draw a line between machine learning and deep learning. Each of them was contradictory in some way. In truth, you can't separate deep learning from machine learning because deep learning is a subfield of machine learning. Deep learning studies a specific set of models called neural networks. The first mentions of the mathematical foundations of neural networks date back to the 1980s, and the theory behind modern neural networks originated in 1958. Still, they failed to show good results until the 2010s. Why?

The answer is simple: hardware. Training big neural networks uses a great amount of computation power. But not any computation power will suffice. It turns out that neural networks do a lot of matrix operations under the hood. Strangely, rendering computer graphics also...

Deep learning use case

To show how deep learning may work in practical settings, we will explore product matching.

Up-to-date pricing is very important for large internet retailers. In situations where your competitor lowers the price of a popular product, late reaction leads to large profit losses. If you know the correct market price distributions for your product catalog, you can always remain a step ahead of your competitors. To create such a distribution for a single product, you first need to find this product description on a competitor's site. While automated collection of product descriptions is easy, product matching is the hard part.

Once we have a large volume of unstructured text, we need to extract product attributes from it. To do this, we first need to tell whether two descriptions refer to the same product. Suppose that we have collected a large dataset of...

Introduction to causal inference

Up to this point, we have talked about predictive models. The main purpose of a predictive model is to recognize and forecast. The explanation behind the model's reasoning is of lower priority. On the contrary, causal inference tries to explain relationships in the data rather than to make predictions about the future events. In causal inference, we check whether an outcome of some action was not caused by so-called confounding variables. Those variables can indirectly influence action through the outcome. Let's compare causal inference and predictive models through several questions that they can help to answer:

  • Prediction models:
    • When will our sales double?
    • What is the probability of this client buying a certain product?
  • Causal inference models:
    • Was this cancer treatment effective? Or is the effect apparent only because of the...

Summary

In this chapter, we have explored the practical applications of AI, data science, machine learning, deep learning, and causal inference. We have defined machine learning as a field that studies algorithms that use data to support decisions and give insights without specific instructions. There are three main machine learning methodologies: supervised, unsupervised, and reinforcement learning. In practice, the most common types of task we solve using machine learning are regression and classification. Next, we described deep learning as a subset of machine learning devoted to studying neural network algorithms. The main application domains of deep learning are computer vision and NLP. We have also touched on the important topic of causal inference: the field that studies a set of methods for discovering causal relationships in data. You now know a lot about general data...

Left arrow icon Right arrow icon

Key benefits

  • Learn the basics of data science and explore its possibilities and limitations
  • Manage data science projects and assemble teams effectively even in the most challenging situations
  • Understand management principles and approaches for data science projects to streamline the innovation process

Description

Data science and machine learning can transform any organization and unlock new opportunities. However, employing the right management strategies is crucial to guide the solution from prototype to production. Traditional approaches often fail as they don't entirely meet the conditions and requirements necessary for current data science projects. In this book, you'll explore the right approach to data science project management, along with useful tips and best practices to guide you along the way. After understanding the practical applications of data science and artificial intelligence, you'll see how to incorporate them into your solutions. Next, you will go through the data science project life cycle, explore the common pitfalls encountered at each step, and learn how to avoid them. Any data science project requires a skilled team, and this book will offer the right advice for hiring and growing a data science team for your organization. Later, you'll be shown how to efficiently manage and improve your data science projects through the use of DevOps and ModelOps. By the end of this book, you will be well versed with various data science solutions and have gained practical insights into tackling the different challenges that you'll encounter on a daily basis.

Who is this book for?

This book is for data scientists, analysts, and program managers who want to use data science for business productivity by incorporating data science workflows efficiently. Some understanding of basic data science concepts will be useful to get the most out of this book.

What you will learn

  • Understand the underlying problems of building a strong data science pipeline
  • Explore the different tools for building and deploying data science solutions
  • Hire, grow, and sustain a data science team
  • Manage data science projects through all stages, from prototype to production
  • Learn how to use ModelOps to improve your data science pipelines
  • Get up to speed with the model testing techniques used in both development and production stages

Product Details

Country selected
Publication date, Length, Edition, Language, ISBN-13
Publication date : Nov 12, 2019
Length: 290 pages
Edition : 1st
Language : English
ISBN-13 : 9781838826321
Category :
Concepts :
Tools :

What do you get with a Packt Subscription?

Free for first 7 days. $19.99 p/m after that. Cancel any time!
Product feature icon Unlimited ad-free access to the largest independent learning library in tech. Access this title and thousands more!
Product feature icon 50+ new titles added per month, including many first-to-market concepts and exclusive early access to books as they are being written.
Product feature icon Innovative learning tools, including AI book assistants, code context explainers, and text-to-speech.
Product feature icon Thousands of reference materials covering every tech concept you need to stay up to date.
Subscribe now
View plans & pricing

Product Details

Publication date : Nov 12, 2019
Length: 290 pages
Edition : 1st
Language : English
ISBN-13 : 9781838826321
Category :
Concepts :
Tools :

Packt Subscriptions

See our plans and pricing
Modal Close icon
€18.99 billed monthly
Feature tick icon Unlimited access to Packt's library of 7,000+ practical books and videos
Feature tick icon Constantly refreshed with 50+ new titles a month
Feature tick icon Exclusive Early access to books as they're written
Feature tick icon Solve problems while you work with advanced search and reference features
Feature tick icon Offline reading on the mobile app
Feature tick icon Simple pricing, no contract
€189.99 billed annually
Feature tick icon Unlimited access to Packt's library of 7,000+ practical books and videos
Feature tick icon Constantly refreshed with 50+ new titles a month
Feature tick icon Exclusive Early access to books as they're written
Feature tick icon Solve problems while you work with advanced search and reference features
Feature tick icon Offline reading on the mobile app
Feature tick icon Choose a DRM-free eBook or Video every month to keep
Feature tick icon PLUS own as many other DRM-free eBooks or Videos as you like for just €5 each
Feature tick icon Exclusive print discounts
€264.99 billed in 18 months
Feature tick icon Unlimited access to Packt's library of 7,000+ practical books and videos
Feature tick icon Constantly refreshed with 50+ new titles a month
Feature tick icon Exclusive Early access to books as they're written
Feature tick icon Solve problems while you work with advanced search and reference features
Feature tick icon Offline reading on the mobile app
Feature tick icon Choose a DRM-free eBook or Video every month to keep
Feature tick icon PLUS own as many other DRM-free eBooks or Videos as you like for just €5 each
Feature tick icon Exclusive print discounts

Frequently bought together


Stars icon
Total 103.97
Advanced Deep Learning with Python
€36.99
Python Machine Learning
€41.99
Managing Data Science
€24.99
Total 103.97 Stars icon

Table of Contents

18 Chapters
Section 1: What is Data Science? Chevron down icon Chevron up icon
What You Can Do with Data Science Chevron down icon Chevron up icon
Testing Your Models Chevron down icon Chevron up icon
Understanding AI Chevron down icon Chevron up icon
Section 2: Building and Sustaining a Team Chevron down icon Chevron up icon
An Ideal Data Science Team Chevron down icon Chevron up icon
Conducting Data Science Interviews Chevron down icon Chevron up icon
Building Your Data Science Team Chevron down icon Chevron up icon
Section 3: Managing Various Data Science Projects Chevron down icon Chevron up icon
Managing Innovation Chevron down icon Chevron up icon
Managing Data Science Projects Chevron down icon Chevron up icon
Common Pitfalls of Data Science Projects Chevron down icon Chevron up icon
Creating Products and Improving Reusability Chevron down icon Chevron up icon
Section 4: Creating a Development Infrastructure Chevron down icon Chevron up icon
Implementing ModelOps Chevron down icon Chevron up icon
Building Your Technology Stack Chevron down icon Chevron up icon
Conclusion Chevron down icon Chevron up icon
Other Books You May Enjoy Chevron down icon Chevron up icon

Customer reviews

Rating distribution
Full star icon Full star icon Full star icon Full star icon Full star icon 5
(2 Ratings)
5 star 100%
4 star 0%
3 star 0%
2 star 0%
1 star 0%
Gustavo Hernandez Jun 12, 2022
Full star icon Full star icon Full star icon Full star icon Full star icon 5
Good content, tools and techniques to manage Data Science projects.
Amazon Verified review Amazon
Ignacio Estrada Dec 21, 2020
Full star icon Full star icon Full star icon Full star icon Full star icon 5
Very useful book, providing an overview of best practices, pitfalls etc. for Data Science projects. I found it particularly useful (vs. other books I've read) for someone like me, coming from the business side, trying to add value through Data Science.
Amazon Verified review Amazon
Get free access to Packt library with over 7500+ books and video courses for 7 days!
Start Free Trial

FAQs

What is included in a Packt subscription? Chevron down icon Chevron up icon

A subscription provides you with full access to view all Packt and licnesed content online, this includes exclusive access to Early Access titles. Depending on the tier chosen you can also earn credits and discounts to use for owning content

How can I cancel my subscription? Chevron down icon Chevron up icon

To cancel your subscription with us simply go to the account page - found in the top right of the page or at https://subscription.packtpub.com/my-account/subscription - From here you will see the ‘cancel subscription’ button in the grey box with your subscription information in.

What are credits? Chevron down icon Chevron up icon

Credits can be earned from reading 40 section of any title within the payment cycle - a month starting from the day of subscription payment. You also earn a Credit every month if you subscribe to our annual or 18 month plans. Credits can be used to buy books DRM free, the same way that you would pay for a book. Your credits can be found in the subscription homepage - subscription.packtpub.com - clicking on ‘the my’ library dropdown and selecting ‘credits’.

What happens if an Early Access Course is cancelled? Chevron down icon Chevron up icon

Projects are rarely cancelled, but sometimes it's unavoidable. If an Early Access course is cancelled or excessively delayed, you can exchange your purchase for another course. For further details, please contact us here.

Where can I send feedback about an Early Access title? Chevron down icon Chevron up icon

If you have any feedback about the product you're reading, or Early Access in general, then please fill out a contact form here and we'll make sure the feedback gets to the right team. 

Can I download the code files for Early Access titles? Chevron down icon Chevron up icon

We try to ensure that all books in Early Access have code available to use, download, and fork on GitHub. This helps us be more agile in the development of the book, and helps keep the often changing code base of new versions and new technologies as up to date as possible. Unfortunately, however, there will be rare cases when it is not possible for us to have downloadable code samples available until publication.

When we publish the book, the code files will also be available to download from the Packt website.

How accurate is the publication date? Chevron down icon Chevron up icon

The publication date is as accurate as we can be at any point in the project. Unfortunately, delays can happen. Often those delays are out of our control, such as changes to the technology code base or delays in the tech release. We do our best to give you an accurate estimate of the publication date at any given time, and as more chapters are delivered, the more accurate the delivery date will become.

How will I know when new chapters are ready? Chevron down icon Chevron up icon

We'll let you know every time there has been an update to a course that you've bought in Early Access. You'll get an email to let you know there has been a new chapter, or a change to a previous chapter. The new chapters are automatically added to your account, so you can also check back there any time you're ready and download or read them online.

I am a Packt subscriber, do I get Early Access? Chevron down icon Chevron up icon

Yes, all Early Access content is fully available through your subscription. You will need to have a paid for or active trial subscription in order to access all titles.

How is Early Access delivered? Chevron down icon Chevron up icon

Early Access is currently only available as a PDF or through our online reader. As we make changes or add new chapters, the files in your Packt account will be updated so you can download them again or view them online immediately.

How do I buy Early Access content? Chevron down icon Chevron up icon

Early Access is a way of us getting our content to you quicker, but the method of buying the Early Access course is still the same. Just find the course you want to buy, go through the check-out steps, and you’ll get a confirmation email from us with information and a link to the relevant Early Access courses.

What is Early Access? Chevron down icon Chevron up icon

Keeping up to date with the latest technology is difficult; new versions, new frameworks, new techniques. This feature gives you a head-start to our content, as it's being created. With Early Access you'll receive each chapter as it's written, and get regular updates throughout the product's development, as well as the final course as soon as it's ready.We created Early Access as a means of giving you the information you need, as soon as it's available. As we go through the process of developing a course, 99% of it can be ready but we can't publish until that last 1% falls in to place. Early Access helps to unlock the potential of our content early, to help you start your learning when you need it most. You not only get access to every chapter as it's delivered, edited, and updated, but you'll also get the finalized, DRM-free product to download in any format you want when it's published. As a member of Packt, you'll also be eligible for our exclusive offers, including a free course every day, and discounts on new and popular titles.